Global LIDAR Remote Sensing of Stratospheric Aerosols and Comparison with WACCM/CARMA:

The Need For Meteoritic Dust In The Stratosphere

CESM Whole Atmosphere Working Group Meeting 23 June 2011 Breckenridge, Colorado

Acknowledge: Dr. Michael Mills and Jason English for basis of current working model.

Ryan R. Neely III (PhD Candidate, CU-Boulder) Advisors: Susan Solomon, Brian Toon, Jeff Thayer, Karen Rosenlof and Michael Hardesty

Why?

Mauna Loa Apparent Transmission

Mauna Loa Lidar Transmission Satellite (Tropics, >15km) PFR

Variability of stratospheric aerosol has an impact on the global radiation budget

Research Questions

Goal: Understand Variability in Stratospheric Aerosol

Seasonal cycles? Long-term trends?

How will I answer these:

Lidar Datasets

Sources of Stratospheric Aerosols

WACCM Setup

- NCAR's WACCM version 3.1.9
- 4x5 degree resolution
- 66 vertical levels
- Model top near 140 km
- Vertical spacing of 1-1.75 km in the stratosphere
- 3D chemical transport Model for OZone And Related chemical Tracers (MOZART)(Horowitz et al. 2003)
- Sulfur chemistry includes seven sulfur species: SO₂, SO₃, SO, H₂SO₄, CS₂ and OCS (English et al., 2011(ACPD))
- 25 year run, using last 10 years for comparison to observations.

Sulfur Emissions Setup

Total SO₂ in Bottom Level of Model During January

SO2 (ppm)

- SO₂ Emission data representative of background aerosol period(Smith et al. (2010) and English et al., 2011(ACPD)).
- OCS field is a lower boundary condition of 510 pptv.

WACCM January Zonal Mean SO₂

CARMA Setup

- Aerosol Size Distributions created by thirty-six bins (dry radii from 0.2 nm to 1100 nm) each for:
 - Pure sulfates (English et al., in prep, 2011)
 - Meteoritic dust (Bardeen et al. 2008)
 - Mixed sulfates (sulfate aerosols with dust cores)

Community Aerosol and Radiation Model for Atmospheres

Comparison With In Situ Observations

SOFIE and Pure Sulfate Model Comparison

10 Extinction (km -1)10-4

10⁻³

Summary

- First global microphysical model of stratospheric aerosols to include current sulfur emissions and meteoritic dust
- Comparison to observations show:
 - I. Agreement within the natural variation of the observations in the lower aerosol layer that is dominated by sulfate aerosols.
 - 2. Meteoritic dust is needed to fully characterize the upper aerosol layer.
 - 3. Inclusion of meteoritic dust is needed within lidar retrievals
- Errors associated with the lidar retrievals need to be addressed before further comparison and analysis of trends can be made.

Observations⇒**Modeling**⇒**Observations**

Future Work: Trends?

Possible theories:

- I. Anthropogenic emissions (Hofmann et al. 2009)?
- 2. Small episodic volcanic injections (Vernier et al. 2009)?
- 3. Strengthening of stratospheric circulation (Butchart et al., 2006; Niwano et al., 2009)?

Adapted from Hofmann at al. (2009)

Thank You

Adapted from Bates et al. 1992

Lidar Retrieval Error Derivable Backscatter

Boulder Retrieval Comparison

- Osiris =alt omi=how much
- Then put in if then logic in mo sad
- Get kathrine to do emission stuff
- Compiler switch
- Intro models
- Show comparison of models
- Show from ells calc that is is 1-2% and not radiatively that important
- Show sofie
- Show lidar and show how this small error can propagate using russel math