WACCM Applications for the Polar Stratosphere and Mesosphere

Cora Randall, Lynn Harvey, Bodil Karlsson

Susanne Benze, Matthias Brakebusch, Laura Holt, Ethan Peck

Chuck Bardeen, Rolando Garcia, Doug Kinnison, Dan Marsh, Mike Mills, Simone Tilmes

Cora Randall, CU-LASP/ATOC Middle Atmosphere Group

Outline

- Polar Stratospheric Ozone Loss
- Polar Mesospheric Temperatures and Clouds
 O Verification of summer polar temperatures
 O Inter-hemispheric teleconnections
- Energetic Particle Precipitation
 - o Auroral electron precipitation effects
 - o MLT Transport
- WACCM CO₂ evaluation

WACCM Output at Satellite Times/Locations (Matthias Brakebusch)

Specific Motivation: To evaluate diurnally varying species in WACCM by comparison with satellite data, for diagnosing ozone loss processes

WACCM Output at Satellite Times/Locations (Matthias Brakebusch)

Specific Motivation: To evaluate diurnally varying species in WACCM by comparison with satellite data, for diagnosing ozone loss processes

WACCM Output at Satellite Times/Locations

Example:

satellite_profilelist_20020125_20110331.nc

- **25-Jan-2002 31-Mar-2011**
- □ MLS, ACE-FTS, HIRDLS, SABER, and SOFIE

Mandatory Variables: Date, Time, Lat, Lon, Orbit #, Profile #, Instrument

Optional Variables: DOY, Local Time, Occultation Type, SZA, Julian Day

PMCs: WACCM Summer Polar Mesosphere T (Susanne Benze)

SD-WACCM run: "SD-WACCM wa4_sdna4_beta0" provided by Dan Marsh.

Years 2007-2009

□ Compare to MLS V3.3, SABER V1.07, and SOFIE V1.1, and Luebken.

PMCs: WACCM Summer Polar Mesosphere T

Cora Randall, CU-LAMA Group

CESM/WACCM working group mtg, Breckenridge, 23 June 2011. 7

PMCs: WACCM Summer Polar Mesosphere

- □ Mesopause shape: model still "frowning".
- Low mesopause compared to MLS, SABER, SOFIE, and Luebken.
 - 3 km too low near solstice,
 - Up to 10 km too low at beginning and end of PMC season.
- □ NH: model T ~agrees with MLS and Luebken, colder than SABER and SOFIE.
- □ SH: model T colder than MLS, SABER, Luebken, and SOFIE.
- □ T variability compared to SOFIE: only fair correlation (R ~ 0.3) in most seasons, better (~0.5) in SH2008.

Energetic Particle Precipitation (EPP)

Free-Running WACCM

F10.7: 210	F10.7: 210
Kp: 4	Kp: 2/3
F10.7: 70	F10.7: 70
Kp: 4	Kp: 2/3

Constant Year Repeating (1950 vs. 2000 SST/GHG/Halogens)

Transient Simulations (1992-Present)

- Auroral Electrons
- Higher Energy Electrons
- Solar Proton Events (C. Jackman)

Specified Dynamics WACCM

1992-Present (No EPP, Aurora, Aurora+MEE, Aurora+MEE+SPE)

2004 (2003 Halloween storms imposed in ~1 January)

WACCM4 with/without Aurora (20-yrs): NOy (Ethan Peck)

Significant EPP-NOy descent in both hemispheres, but stronger in South

Energetic Particle Precipitation (EPP): SH Ozone

Energetic Particle Precipitation (EPP): SH Ozone

- Rigorous significance tests will be done.
- HOx- and NOx-induced ozone depletion, including persistence through August, possibly "real".
- UTLS signals are spurious

Energetic Particle Precipitation (EPP): NH Ozone

Few, if any, significant effects on ozone in the North.

Energetic Particle Precipitation (EPP): SH Temp

- Tantalizing results for temperature, but need more statistics
- Possible effect on PMCs?

EPP: Is the WACCM meteorology correct? (Laura Holt)

EPP: Is the WACCM meteorology correct?

EPP: Is the WACCM meteorology correct?

WACCM4 much better than WACCM3: But is the average vortex too small now?

EPP: How is EPP-NO redistributed? (Lynn Harvey)

18

EPP: MLT Trajectories (Lynn Harvey)

- Initialize trajectories with latitude & ions
- Advect over 24 hours on 1 Jan with WACCM U, V, and diabatic heating rates
- Results imply very rapid transport of NO out of auroral oval and to lower latitudes

WACCM CO₂ compares very well with ACE overall

Disagreement at high SH latitudes by end of winter: Too much descent in WACCM

Thanks very much!!