High-resolution runs with CAM5 FV and CAM5 SE

<u>Julio Bacmeister</u>, Cecile Hannay, Richard Neale, Peter Lauritzen, Andrew Gettelman, John Truesdale, Julie Caron, *NCAR* Mark Taylor, *DOE Sandia*

AMWG Meeting, 1-3 February, 2012

Existing High-Resolution Experiments

CAM 4:

FV dycore 0.23x0.31

- 1979-present. 2 runs, 1 with GFDL tracking data available 6-hrly, 1 with everything recoverable but U850,V850.
- Future time-slice 2080-2100 (present day climo SSTs)+(CMIP5 RCP8.5 perturbation)

CAM5:

FV dycore 0.23x0.31

- 1979-present (Michael Wehner LBNL, prescribed BAM aerosols)
- 18 month runs (2005-6) (Both prescribed BAM and predicted MAM aerosols)
- 18 month run w/out deep convection scheme
- 18 month runs w/precipitation loading effects
- Spectral element (SE) dycore ~25km
- Short AMIP and climo runs examining different surface topography datasets
- Spectral element (SE) dycore ~12.5km
- Ongoing AMIP run 2004-

Outline

Choosing topography and damping in SE – momentum flux analysis

Topographic effects on mean precipitation

Precipitation statistics in SE and FV

Multivariate relationships between precipitation and other fields

Choosing Topography and/or explicit damping for CAM-SE (Lauritzen et al. ...)

Paucity of observational validation methods. One possibility – stratospheric long-duration superpressure balloons (Hertzog et al. 2008)

http://www.lmd.polytechnique.fr/VORCORE/campag neE.htm

Monthly mean ω at σ ~0.5 (~500 hPa)

OMEGA ../ne120_1e13-sm250/famip5_ne120a.cam2.h0.1995Habbahmene008-99999

famip5_ne120a.cam2.h0.1995-02.nc _000-99990-99lobal mean=-1.2 OMEGA

CAM-SE 25 km Rough topography

CAM-SE 25 km Roughest topography

280.0 240.0 200.0 160.0 120.0 80.0 40.0 0.0 -40.0

-80.0 *****

statutate ***** ***** ***** *****

FV latlon 0.23x0.31

Resolved gravity wave momentum flux -October 2005, 70 hPa

where ()'s are deviations from ~500 km means and overbar is a horizontal/time average.

Unfortunately momentum flux at 70 hPa doesn't discriminate between rough and smooth topo. May be useful for tuning internal explicit dissipation. – TBD.

Topographic effects on precipitation with increasing resolution

Total Precipitation (JJA)

1

Much improved spatial pattern and magnitude of rainfall

- Western India and Bay of Bengal
- Longstanding wet bias over Yemen, Oman and Saudi Arabia
- Somali jet more realistic

CAM4 US Precipitation

Surface elevation (m)

FV 0.25 degree fgd000_nch _200502 famip5_ne120b _199001_199002_199003 PHIS PHIS

2251.0 2101.0 1951.0 1801.0 1651.0 1501.0 1351.0 1201.0 1051.0 901.0 751.0 601.0 451.0 301.0 151.0 1.0

SE ne120 "smooth" topography

DJF precipitation (mm d⁻¹)

SE ne120 "smooth" topography

17.0 14.0 12.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.5 0.2

0.0

DJF meridional wind (m s⁻¹)

v

FV 0.25 degree

SE ne120 "rough" topography

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0-3.0 -4.0 -5.0 -6.0 -7.0 -8.0

famip5_ne120b _199001_199002_199003

SE ne120 "smooth" topography

High-resolution/rough topography. Flow steered north into SE US carrying moisture

Precipitation statistics at highresolution

JJA Precipitation (one season)

2 degree CAM5

0.25 degree CAM5 coarsened to 2 degrees

SE ne120 => 200km

17.0 14.0 12.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.5

Precipitation Intensity Statistics for August (instantaneous 3hrly data)

(Bacmeister et al 2012, GRL)

Precipitation Intensity Statistics for JJA (instantaneous 3hrly data)

Precipitation Intensity Statistics for JJA (instantaneous 3hrly data)

Convective versus total precipitation statistics

Where do various intensity regimes fall? CAM-FV

>1000 mm d⁻¹

500 -1000 mm d⁻¹

100 -500 mm d⁻¹

Where do various intensity regimes fall? CAM-SE

>1000 mm d⁻¹

500 -1000 mm d⁻¹

100 -500 mm d⁻¹

Precipitation Intensity Statistics for JJA (instantaneous 3hrly data) in CAM-SE ne240 (12.5km) vs ne120 (25km)

Multivariate precipitation statistics at high-resolution

Attempt to find dynamical relationships, perhaps new quantities for validation

Raw 3-hrly 0.25 degree

Binned to daily 1 degree

Correlation of 90-day precipitation and ω_{850} time-series

Precipitation leads $\omega_{\rm 850}$ by 3hours

Precipitation lags $\omega_{\rm 850}$ by 3hours

Precipitation leads $\omega_{\rm 850}$ by 3hours

Composites conditioned on precipitation rates

e.g., Sahany, Neelin and co-workers

Domains for composite analysis

Conclusions and Future developments

Trade-off between topographic smoothing and regional improvements in precipitation in CAM-SE. With rough topo mean ω fields become noisy.

Exploring divergence damping for SE combined with rough topography. Looking for "sweet spot" yielding good precipitation and moderate ω noise

Precipitation intensity statistics in SE and FV are different. Counterintuitively, SE shows fewer events with >1000 mm d⁻¹

Exploring multivariate analyses techniques

Physics/dynamics coupling in SE on uniform grid, UINCON, CLUBB

Questions and Future Work

Time slices with CAM5

Is weak cyclogenesis with CAM4 physics vs CAM5 related to large-scale variables or to physics? *Calculate potential intensity diagnostics etc..*

Implement GFDL cyclone tracking codes

Total Precipitation (JJA)

Initial implementation of CAM-SE uses very smooth topography. Reduces improvement in precipitation patterns related to topography **Courtesy Rich Neale**