River N Export: a Constraint on Mineral N Loss in the CLM-CN?

Cynthia Nevison University of Colorado/INSTAAR

Acknowledgements: NSF ETBC, Peter Hess, E. Holland, Q. Thomas et al.

Global Reactive Nitrogen (Nr) Creation by Human Activity 1850 to 2005

Courtesy of J. Galloway

Adapted from Thornton et al., 2009

Too Much Nitrogen: A "Cascade" of Consequences

Smog, Haze

Forest Die-back

Acidification

Global Warming

Eutrophication

Courtesy of J. Galloway

Does it matter whether or not CLM-CN correctly partitions mineral N losses between denitrification and leaching?

Yes, if you want to capture the full nitrogen "cascade."

How will we know if revised versions of CLM-CN are getting mineral N losses right?

Compare results directly to observed leaching or denitrification rates.

Compare to global patterns of river N export.

Simulating Nitrogen Transport in the CLM-River Transport Model (RTM)

Water Fluxes

N Leaching Flux in CLM-CN

N Leaching

Parameterization of Nitrogen Transport in CLM-River Transport Model (RTM)

Water Fluxes

Mineral N Losses and Inputs in CLM-CN

Denitrification + Leaching

N River Transport in Coupled RTM/CLM-CN

River N Export to the Ocean

River [N]_{total} Concentration (mg/L)

River [N]_{total} "Natural" Rivers Only

Agricultural + Point Sources < 15% of total N inputs

Lena

Why is RTM overestimating dissolved [N] ?

Changes in [N]_{tot} along Longest Main Stem of River

Yukon

Amazon

Summary

- CLM-CN underestimates mineral N losses due to leaching and may tend to downplay the impact of anthropogenic N additions on the Earth System.
- Total CLM-CN mineral N losses, when input to the RTM (scaled down by 0.4), produce (somewhat) reasonable patterns of global river N export and dissolved [N] concentration.

a) Global N export underestimated due to lack of agricultural N inputs.

b) [N] tends to be overestimated in "natural" Arctic rivers.

Mississippi River Seasonality in [N] vs. Water Flow

Observed (USGS NASQAN)

CLM-RTM

N Inputs and Outputs in CLM-CN

Missouri/Mississippi River

Remove 17 and 13

N Fertilizer Consumption Trends 1961-2009

Data from FAOSTAT

Dalalven

Why is RTM overestimating dissolved [N]?

