

Global modelling of iodine in the troposphere and lowermost stratosphere

Carlos Ordóñez (1, 2), Alfonso Saiz-Lopez (1)

Douglas E. Kinnison (2), Jean-François Lamarque (2), Simone Tilmes (2)

1: Laboratory for Atmospheric and Climate Science, CIAC-CSIC, Toledo, Spain 2: NCAR, Boulder, CO, USA

carlos.ordonez@ciac.jccm-csic.es

Outline

1. Motivation

- 2. Implementation of VSL halogenated sources in CAM-Chem
- 3. Model results for reactive bromine / iodine
- 4. Impact of bromine / iodine on O_3 (tropics)
- 5. Summary and ongoing work

1. Motivation

1. Troposphere

- Observations of IO, BrO, etc. in polar and coastal areas
- Presence of IO and BrO confirmed over the open oceans

Halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer (Read et al., Nature, 2008).

(Saiz-Lopez et al., ACP, 2012)

Scientific questions:

- Impact of halogens on the O₃ budget
- Impact on HO_x, NO_x, methane lifetime

1. Motivation

2. Stratosphere

"On the role of iodine in ozone depletion", Solomon et al., JGR, 1994

Solomon et al., JGR, 1994 Gilles et al., JPC-A, 1997

Since then:

- New kinetic information on iodine available
- Attempts to detect reactive iodine in the UTLS

Wennberg et al., JGR,1997 Wittrock et al., GRL, 2000 Bösch et al., JGR, 2003 Pundt et al., JAC, 1998 Berthet et al., JGR, 2003 Butz et al., ACP, 2009

Most recent analyses:

- ≤0.1 pptv IO, OIO in lower stratosphere (in northern high and mid-latitudes, and tropics)
- Estimated total inorganic iodine: (Photochemical 1-D model)

Sci. Assessment of Ozone Depletion (WMO, 2011):

Unlikely that iodine plays a significant role in the photochemistry of stratospheric ozone

2. Implementation of VSL sources

CAM-Chem

- Fixed SST and ice (monthly climatology)
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
- Tropospheric and stratospheric chemistry (Emmons et al., 2010; Kinnison et al., 2007)

VSL Halogen Chemistry

• Implementation of VSL (τ < 6 months) halogenated sources from the ocean

Very short-lived (VSL) halogenated sources

Source gas	Local Lifetime (WMO, 2010)	Main loss	_
CH ₂ BrCl	137 days	OH, hv	
CH_2Br_2	123 days	OH, hv	
CHBrCl ₂	78 days	OH, hv	
CHBr ₂ CI	59 days	hv, OH	
CHBr ₃	24 days	hv, OH	
CH ₃ I	7 days	hv, OH	(Bell et al., 2002)
CH ₂ ICI	~ 2–3 h	hv	
CH ₂ IBr	~1 h	hv	
CH_2I_2	~ 5 min	hv	
I_2	~ secs	hv	

2. Implementation of VSL sources

CAM-Chem

- Fixed SST and ice (monthly climatology)
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
- Tropospheric and stratospheric chemistry (Emmons et al., 2010; Kinnison et al., 2007)

VSL Halogen Chemistry

- Implementation of VSL (τ < 6 months) halogenated sources from the ocean
- Emissions following Chl-a over tropics
- Top-down approach (following Warwick et al., JGR, 2006; Liang et al., ACP, 2010)
- Photochemistry
- Dry / wet deposition
- Catalytic release from sea-salt

VSL halogen sources in CAM-Chem

Ordóñez et al., ACP, 2012 \rightarrow Description and evaluation of VSL sources

3. Results: Daytime bromine profiles over the tropical oceans

Notes:

- SLIMCAT run with CH₃Br (9.6 ppt), halons (6.8 ppt), and VSLS (4 ppt as CH₂Br₂) plus PGs (1 ppt as HBr).
- Photochemical breakdown only in stratosphere.

Notes CAM-Chem:

- Halons = H-1211 + H-1301 (i.e. $CF_2CIBr + CF_3Br$) - VSLS = 3 $CHBr_3 + 2 CH_2Br_2 + CH_2BrCI + 2 CHBr_2CI + CHBrCI_2$ - Total $Br_v = Br + BrO + HBr + BrONO_2 + BrCI + HOBr$

Iodine profiles over tropical oceans (no photolysis of I_2O_v)

 $I_v = I + IO + OIO + IONO_2 + HI + HOI$

Butz et al. (2009): Upper limits of IO, OIO ~ 0.1 ppt

Iodine partitioning in LMS (thermal tropopause – 400 K isentrope)

4. Halogen-driven ozone loss in the tropics (VSL *minus* no VSL)

Change in tropical tropospheric ozone column:

 $\Delta O_3 = -2.6 \text{ DU} (10.5 \%)$ $\Delta O_3 = -0.8 \text{ DU} (3.2\%)$

 $\Delta O_3 = -1.8$ DU (7.3%)

Yang et al., JGR, 2005: 4-6% trop. O_3 loss (due to bromine)

Parrella et al., ACPD, 2012: 6.5 % trop. O₃ loss (due to bromine)

Annual average difference in radiation fluxes at tropopause

This negative contribution is ~ 30% of the positive contribution to the TOA radiation flux associated with infrared ozone absorption

Sensitivity runs: photolysis of I₂O_y

Ozone depletion efficiency by iodine enhanced if I_2O_y photolysis is included.

However significant uncertainties:

- I₂O_v absorption cross sections
- Possible mechanism for iodine loss (e.g. uptake by stratospheric aerosols)

5. Summary & ongoing work

- VSL oceanic sources and chemistry of bromine/iodine implemented in CAM-Chem
 3.6.x → Current work: Implementation in CESM 1.1
- Iodine partitioning: high I/IO ratio in tropical UTLS
- Iodine-mediated ozone depletion, compared to bromine, dominates throughout the tropical troposphere (impact on TOA radiation flux), but small in tropical LMS.
- Experimental work on I₂O_y (and other iodine species) is key to further determine the role of iodine in ozone depletion in the UTLS

2. Motivation to include VSLS

2. Stratosphere

Since then:

- New kinetic information on iodine available
- Attempts to detect reactive iodine in the UTLS

Sci. Assessment of Ozone Depletion (WMO, 2011):

- Unlikely that iodine plays a significant role in the photochem. of stratospheric ozone
- VSLS contribute to stratospheric bromine ~1–8 ppt.
- Uncertainties in quantifying the impact of CI- and Brcontaining VSLS on stratospheric ozone
- Contribution of VSLS to stratosphere could be altered under a changed climate

3. CESM framework

Feedbacks among the different elements in the climate system

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv
	ļ	

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv

Introductory conclusion: Oxidizing capacity and O₃ radiative impact

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv

Example: CHBr₃ emissions

Ordóñez et al., ACP, 2012

Comparison with aircraft observations (1996 – 2008)

Comparison with monthly output from the latest year of a model simulation

Bromoform (CHBr₃)

Bromoform (CHBr₃)

Dibromomethane (CH₂Br₂)

Dibromomethane (CH₂Br₂)

Methyl iodide (CH₃I)

Methyl iodide (CH₃I)

Underestimation of CH_3I , and possibly of O_3 loss by iodine chemistry in the UTLS

aircraft (mean ± stdev)

model (mean ± stdev)

For more on:

- Evaluation of VSLS (Ordóñez et al., ACP, 2012)

- Impact of VSLS on the Earth's radiative balance through their effect on tropospheric O3 (Saiz-Lopez et al., ACP, 2012)

4. Halogen-driven ozone loss in troposphere (VSL minus no VSL)

Yang et al., JGR, 2005: 4-6% trop. O_3 loss (due to bromine)

Parrella et al., ACPD, 2012: 6.5 % trop. O_3 loss (due to bromine)

4. Halogen-driven ozone loss in troposphere (VSL minus no VSL)

Yang et al., JGR, 2005: 4-6% trop. O_3 loss (due to bromine)

Parrella et al., ACPD, 2012: 6.5 % trop. O_3 loss (due to bromine)

Ozone loss: Br / I contribution to LMS

Annually-globally integrated O_3 column difference (tropopause + 2 km above)

VSL minus no VSL

Up to $\sim 1.7 \text{ DU O}_3 \text{ loss}$

- Globally, additional O3 loss from Br and I:
 VSL Br contrib. to O₃ loss:
 - I contrib. to O_3 loss:

~65%

~34% (but I contributes more than Br over the tropics)

VSL minus base run

VSL bromine *minus* base run

Iodine minus base run

(VSL + IONO2 uptake) *minus* base run (VSL + IONO2 uptake + I2Oy photol)

I2Oy photol

