

Proudly Operated by Battelle Since 1965

CAM5 Estimates of Global Source-Receptor Relationships for Black Carbon under Present-day Emission Scenario

Hailong Wang, Phil Rasch, Dick Easter, Nat Beagley, Balwinder Singh

Atmospheric Sciences and Global Change Division, PNNL

Chemistry Climate WG Meeting, 17th Annual CESM Workshop 20 June 2012, Breckenridge, CO

This work has been supported by the DOE Office of Science (BER) Climate Modeling program.

Introduction: black carbon in CAM5

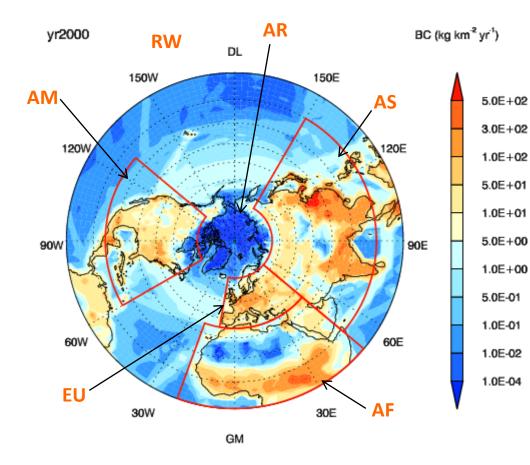
- The standard CAM5 is not correctly characterizing Arctic BC forcing (signatures are quite similar to other models; Koch et al. 2009); Systematic BC biases include:
 - Over-prediction at high altitudes
 - Under-prediction near surface
 - Poor seasonal cycle
- Contributing factors could be:
 - Wet removal and BC aging (Liu et al., 2012; Wang et al., 2012)
 - Eddy/circulation transports (Ma et al., 2012)
 - Model resolution (Fast et al., 2012; Rasch et al., 2012)
 - Inconsistencies in cloud micro-/macro-physics (Caldwell et al., 2012)
 - Emissions (Wang et al., 2012)

Motivation and objective

- BC is an important forcing agent in the atmosphere (e.g., direct, indirect and semi-direct effects and associated feedbacks)
- BC in snow and ice can result in more rapid melting (e.g., Warren and Wiscombe, 1980), changing the coupled climate system through snow-albedo feedback (e.g., Flanner et al. 2007)
- Large uncertainties in BC emissions (Bond et al. 2004; Lamarque et al. 2010) and BC prediction by global models
- We use a tagging technique to establish global source-receptor relationships with a focus on the Arctic BC
- To assess climate impact of change in regional BC emissions

The tagging methods in CAM5

Simple method:

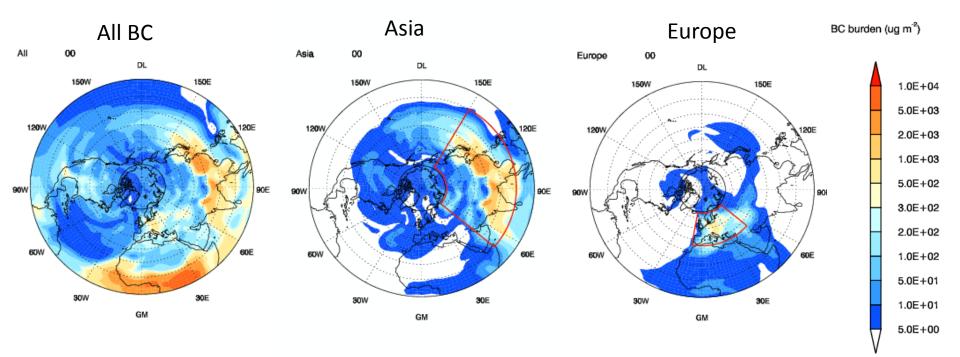

- Emissions divided by geographical regions and tagged by flavors
- Mass tendencies of flavors are derived from those of the original variable, assuming that tendency is proportional to mass.
- Flavors are explicitly advected
- Easy to implement but cannot apply to species undergoing transformation
- Explicit (brute-force) method:
 - Do the same to emissions
 - Define a new variable for each of the tagged regions
 - Each variable experiences the same tendency calculations and advection
 - More straightforward and accurate, but more expensive

BC emission and source/receptor regions

Proudly Operated by Battelle Since 1965

AR5 year 2000 BC emission (Lamarque et al., 2010)

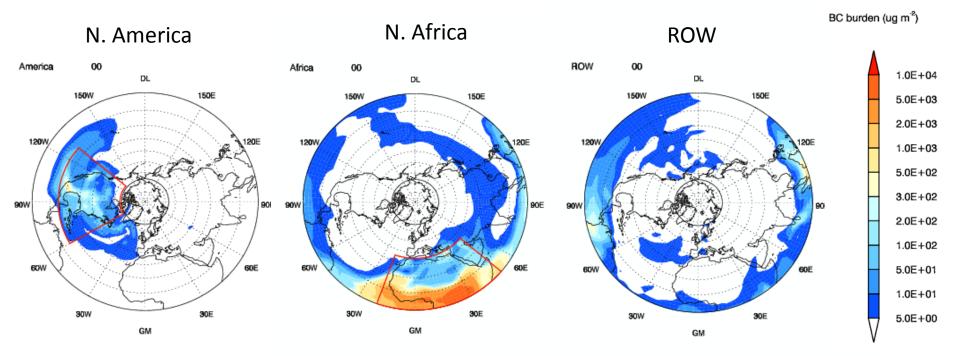
AS: Asia (50-150E, 10-65N) AM: N. America (60-130W, 15-65N) EU: Europe (10W-50E, 35-65N) AF: N. Africa (20W-50E, 0-35N) AR: Arctic (66.5-90N) RW: Rest of world Global: 7.8 Tg/yr AS: 3.0 EU: 0.83 AF: 0.99 AM: 0.63 AC: 0.008 ROW: 2.33


10-year 2-degree (1.9° x 2.5°) simulation

- Fixed year 2000 SST
- The 3-mode modal aerosols (MAM-3; Liu et al. 2012)
- Improved cloud/precipitation scavenging (Wang et al. 2012)
- New treatment of convective transport & wet removal of aerosols (Wang et al. 2012)
- AR5 year 2000 emissions (Lamarque et al. 2010)

Results: transport pathways of regional BC

Proudly Operated by Battelle Since 1965



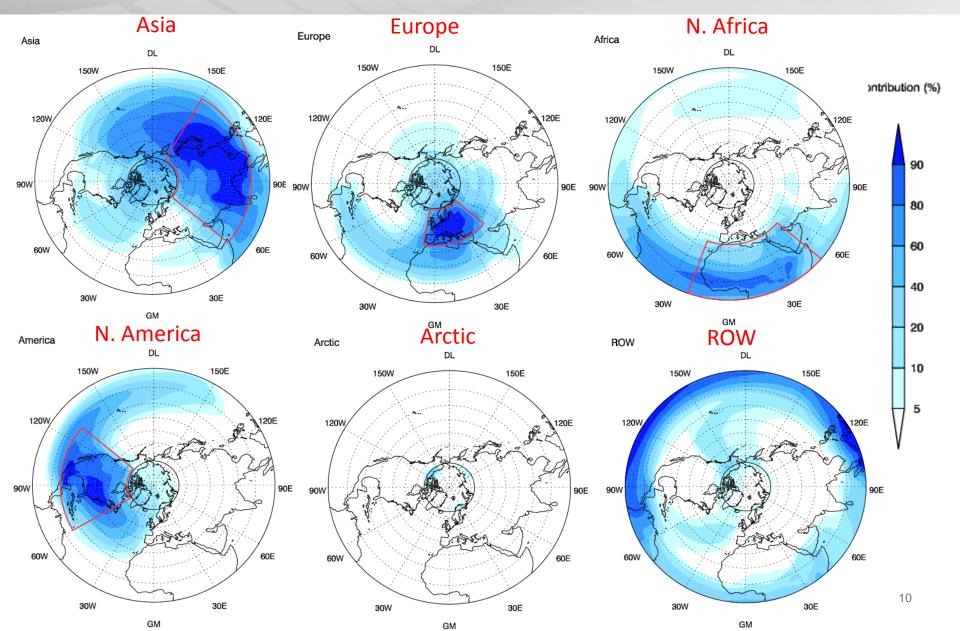
Animation of daily-mean BC atmospheric column burden in January of yr-10

Results: transport pathways of regional BC

Proudly Operated by Battelle Since 1965

Contribution of source i to burden in receptor region j $C_{i,j} = (B_i / \Sigma B_i)_j$

 $(\Sigma B_i)_i$ represents the total burden in region j.


Fificiency of source i affecting receptor j $F_{i,j} = C_{i,j} / (E_i / \Sigma E_i)$

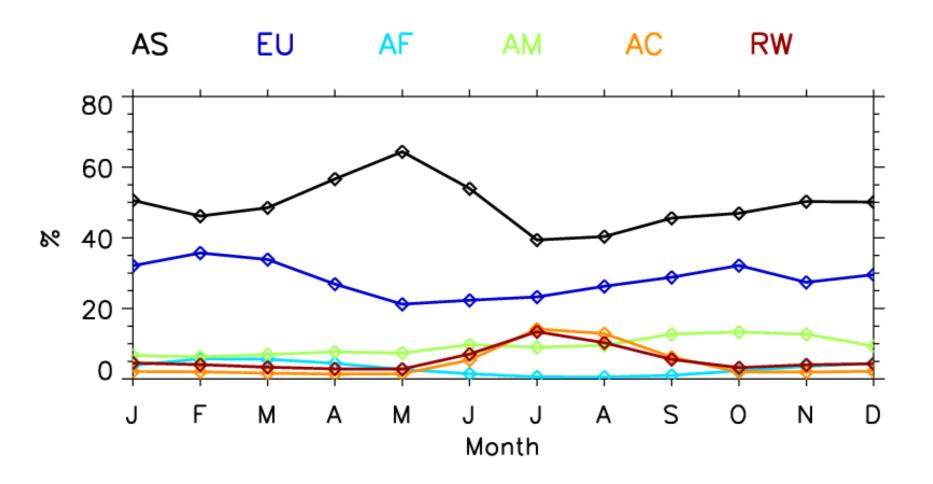
ΣE_i represents global total emission rate.

Results: source attribution (ANN)

Proudly Operated by Battelle Since 1965

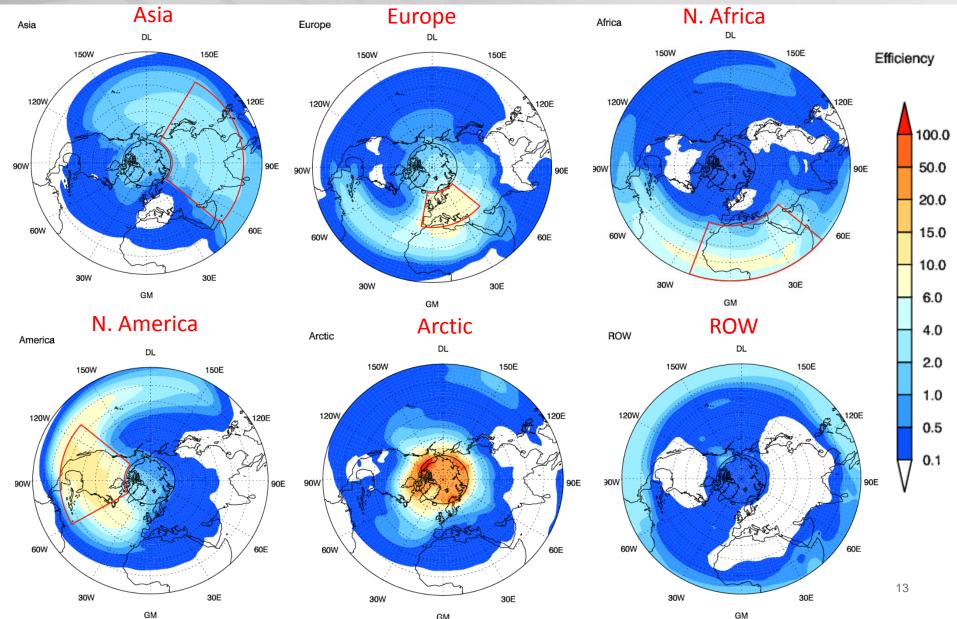
Results: source/receptor matrix (ANN)

Proudly Operated by Battelle Since 1965


	() 5	10	20 3	0 50	70	90 10	00 (%)		
Burd (Gg): 24.39			5.66	16.90	5.78	0.97	42.09	Emis (Tg yr ⁻¹):		
source	RW	1.6	0.8	16.0	2.1	5.9	67.4	<mark>2.333</mark> R		
	AC	0.1	0.1	0.0	0.2	5.2	0.1	- 0.008 (c tł		
	AM	0.6	2.9	0.8	81.4	9.0	3.2	- so 0.632 b		
	AF	3.5	3.7	65.3	2.6	2.8	17.5	0.994		
	EU	6.2	87.7	13.6	3.2	27.3	2.5	0.834		
	AS	88.0	4.8	4.1	10.4	49.8	9.2	3.005		
	-	AS	EU	AF	АМ	AC	RW	-		
receptor										

Relative contributions (colored) derived from the global distribution of source attribution for BC burden

Arctic BC: seasonal variation of contributions


Proudly Operated by Battelle Since 1965

A different measure: the efficiency

Proudly Operated by Battelle Since 1965

GM

Results: source/receptor matrix for efficiency

Proudly Operated by Battelle Since 1965

0.0 0.1 0.5 1.0 5.0 20.0 50.0 70.0 90.0(Efficiency)												
Burd (Gg): 24.39			5.66	16.90	5.78 0.97		42.09	42.09 Emis (Tg yr ⁻¹):				
	RW	0.1	0.0	0.5	0.1	0.2	2.3	2.333				
source	AC	0.5	1.1	0.1	1.7	47.6	0.5	0.008	Sensitivity of burden in the receptor			
	АМ	0.1	0.4	0.1	10.1	1.1	0.4	0.632				
	AF	0.3	0.3	5.1	0.2	0.2	1.4	0.994	region to per unit perturbation of			
	EU	0.6	8.2	1.3	0.3	2.6	0.2	0.834	emission in a source region			
	AS	2.3	0.1	0.1	0.3	1.3	0.2	3.005				
	-	AS	EU	AF	AM	AC	RW	-				

receptor

- We developed a regional aerosol source tagging technique in CAM5, which can be used to establish the quantitative aerosol sourcereceptor relationships and identify transport pathways.
- In this particular study, it's applied to a model version with improved aerosol vertical and long-range transport to focus on Arctic BC.
- Under the AR5 yr2000 emission scenario, emission from Asia contributes the most to the Arctic BC, and then Europe and N. America; they affect different sectors in the Arctic.
- The Arctic BC is most sensitive to emission uncertainties within the Arctic, and then Europe, Asia and N. America.
- We are using this tool to study the impact of changes in regional BC emissions, as well as other aerosol species.