Resolving Grounding Line Dynamics with the BISICLES AMR Ice Sheet Model

Dan Martin
Lawrence Berkeley National Laboratory

CESM-LIWG Meeting
June 21, 2012

RTsTeLes

20 BRISTOL

Berkeley-ISICLES (BISICLES)

- DOE ISICLES-funded project to develop a scalable adaptive mesh refinement (AMR) ice sheet model/dycore
- Local refinement of computational mesh to improve accuracy
- Use Chombo AMR framework to support block-structured AMR
- Support for AMR discretizations
- Scalable solvers
- Developed at LBNL
- DOE ASCR supported (FASTMath)
- Interface to CISM (and CESM) as an alternate dycore
- Collaboration with LANL and Bristol (U.K.)

- Continuation in SciDAC-funded PISCEES effort

Why is this useful? (another BIIICLE for another fish?)

- Ice sheets -- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Antarctica is really big - too big to resolve at that level of resolution.
- Large regions where such fine resolution is unnecessary (e.g. East Antarctica)
- Well-suited for adaptive mesh refinement (AMR)
- Problems still large: need good parallel efficiency
- Dominated by nonlinear coupled elliptic system for ice velocity solve: good linear and nonlinear solvers
[Rignot \& Thomas, 2002]
BTsTeLes

BISICLES: Models and Approximations

Physics: Non-Newtonian viscous flow: $\mu\left(\epsilon^{2}, T\right)=A(T)\left(\epsilon^{2}\right)^{\frac{(1-n)}{2}}$

- Full-Stokes
- Best fidelity to ice sheet dynamics
- Computationally expensive (full 3D coupled nonlinear elliptic equations)
- Approximate Stokes
- Use scaling arguments to produce simpler set of equations
- Common expansion is in ratio of vertical to horizontal length scales $\left(\varepsilon=\frac{[h]}{[l]}\right)$
- E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $0\left(\varepsilon^{2}\right)$
- Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)
- Depth-integrated
- "Shallow Ice" and "Shallow-Shelf" approximations (accurate to $\mathrm{O}(\varepsilon)$)
- Special case of approximate Stokes with 2D equation set
- Easiest to work with computationally, generally less accurate

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
- Expansion in ε and $\lambda=\frac{\left[\tau_{\text {shear }}\right]}{\left[\tau_{\text {normal }}\right]}$ (ratio of shear $\&$ normal stresses)
- Large λ : shear-dominated flow
- Small λ : sliding-dominated flow
- Computing velocity to $O\left(\varepsilon^{2}\right)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- Similar formal accuracy to Blatter-Pattyn $O\left(\varepsilon^{2}\right)$
- Recovers proper fast- and slow-sliding limits:
- SIA $\left(1 \ll \lambda \leq \varepsilon^{-1 / n}\right)$-- accurate to $O\left(\varepsilon^{2} \lambda^{n-2}\right)$
- SSA $(\varepsilon \leq \lambda \leq 1)$ - accurate to $O\left(\varepsilon^{2}\right)$

鷘沓 University of
BRISTOL

"L1L2" Model (Schoof and Hindmarsh, 2010), cont.

- Use this result to construct a computationally efficient scheme:

1. Approximate constitutive relation relating $\operatorname{grad}(u)$ and stress field τ with one relating $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$, vertical shear stresses $\tau_{x z}$ and $\tau_{x z}$ given by the SIA / lubrication approximation and other components $\tau_{x x}(x, y, z)$, $\tau_{x y}(x, y, z)$, etc
2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$ and $\operatorname{grad}\left(z_{s}\right)$, ice thickness, etc
3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $\left.u\right|_{z=b}(x, y)$
4. $u(x, y, z)$ can be reconstructed from $\left.u\right|_{z=b}(x, y)$

Temporal Discretization

Update equation for $\mathrm{H}: \frac{\partial H}{\partial t}+\nabla \cdot(\vec{u} H)=S$

- "looks" like hyperbolic advection equation (explicit scheme, Courant stability -- $\Delta t \propto \Delta x$)
- Velocity field has ∇H piece - diffusion equation for $\mathrm{H}\left(\Delta t \propto \Delta x^{2}!\right)$
- Strategy (Cornford) - try to factor out diffusive flux and discretize as an advection-diffusion equation:
- $\vec{F}=\vec{u} H=\vec{F}_{\text {advective }}+\vec{F}_{\text {diffusive }}$
- $\vec{F}_{\text {diffusive }}=-D \nabla H$
- Now solve: $\frac{\partial H}{\partial t}+\nabla \cdot \vec{F}_{\text {advective }}=\nabla \cdot(D \nabla H)+S$
- Advective fluxes: explicit update using unsplit $2^{\text {nd }}$ Order PPM scheme
- Diffusive fluxes: implicit update (Backward Euler for now)

Temporal Discretization（cont）

－Test case based on ISMIP－HOM A geometry
－$\Delta x=2.5 \mathrm{~km}, \Delta t_{C F L}=5 \mathrm{a}$

－Unfortunately，still run into stability issues finer than $\Delta x<0.5 \mathbf{k m}$ ！

简红 University of

Modified "L1L2" Model (ssA*)

- Use this result to construct a computationally efficient scheme:

1. Approximate constitutive relation relating $\operatorname{grad}(u)$ and stress field τ with one relating $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$, vertical shear stresses $\tau_{x z}$ and $\tau_{x z}$ given by the SIA / lubrication approximation and other components $\tau_{x x}(x, y, z)$, $\tau_{x y}(x, y, z)$, etc
2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$ and $\operatorname{grad}\left(z_{s}\right)$, ice thickness, etc
3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $\left.u\right|_{z=b}(x, y)$
4. $u(x, y, z)$ cannan (x v)
5. Use $u(x, y, z)=\left.u\right|_{z=b}(x, y)$ (neglect vertical shear in flux velocity)

造

BISICLES Results - MISMIP3D

Experiment P75R:
 (Pattyn et al (2011)

- Begin with steady-state (equilibrium) grounding line.
- Add Gaussian slippery spot perturbation at center of grounding line
- Ice velocity increases, GL advances.
- After 100 years, remove perturbation.
- Grounding line should return to original steady state.
- Figures show AMR calculation:
- $\Delta x_{0}=6.5 \mathrm{~km}$ base mesh,
- 5 levels of refinement
- Finest mesh $\Delta x_{4}=0.195 \mathrm{~km}$.
- $\mathrm{t}=0,1,50,101,120,200 \mathrm{yr}$
- Boxes show patches of refined mesh.
- GL positions match Elmer (full-Stokes)

BTSTRES
故 $1 / 2$ University of \%2

MISMIP3D (cont)

- Plot shows grounding line position $x_{G L}$ at $y=50 \mathrm{~km}$ vs. time for different spatial resolutions.

ㅁ $\Delta x=0.195 \mathrm{~km} \rightarrow 6.25 \mathrm{~km}$

- Appears to require finer than 1 km mesh to resolve dynamics
- Converges as $\mathrm{O}(\Delta x)$ (as expected)

紫寀 UR Univerity of
BRISTOL

BISICLES Results - Pine Island Glacier

- Cornford, et al, JCP (2011, submitted)
- PIG configuration from LeBrocq:
- Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
- AGASEA thickness
- Isothermal ice, $A=4.0 \times 10^{-17} \mathrm{~Pa}^{-\frac{1}{3}} \mathrm{~m}^{-1 / 3} a$
- Basal friction chosen to roughly agree with Joughin (2010) velocities
- Specify melt rate under shelf:
- $M_{s}=\{$

$$
\begin{gather*}
H<50 \mathrm{~m} \\
50 \leq H \leq 500 \mathrm{~m} \\
H>500 \mathrm{~m}
\end{gather*}
$$

- Constant surface flux $=0.3 \mathrm{~m} / \mathrm{a}$
- Evolve problem - refined meshes follow the grounding line.
- Calving model and marine boundary condition at calving front

我 $1 / 2$ University of
\&2

PIG (cont)

盛 URISTOL University of

PIG, cont

Coloring is ice velocity, $\Gamma_{g l}$ is the grounding line. Superscripts denote number of refinements. Note resolution-dependence of $\Gamma_{g l}$

BTSTMETS

Amundsen Sea Sector

- Regional Model
- Heavy subshelf melting drives retreat (up to $100 \mathrm{~m} / \mathrm{a}$)
- Melt rate function of depth (strongest melting near GL)
- 4 km base mesh
- 3 levels of refinement (2km, 1km, 500m)
- Courtesy of Steph Cornford

Filchner-Ronne/Ross

- Light melting (< $5 \mathrm{~m} / \mathrm{a}$)
- 5 km base resolution
- 2 refinement levels (2.5km, 1.25km)
- "few hours" for 32 processors to evolve for 50 yrs
- Courtesy of Steph Cornford

DB: minthck250.maxthck500.rate5.2le Cycle: $0 \quad$ Time:0

Simple Rheology/Damage model

- Solve control problem for ice initial condition
- Include new parameter φ which multiplies viscosity
- $\varphi<1$ (blue) = softening
- $\varphi>1$ (red) = hardening

䀧 Univesity of

Antarctica (Ice2Sea)

- Refinement based on Laplacian(velocity), grounding lines
- 5 km base mesh with 3 levels of refinement
- base level (5 km): 409,600 cells (100% of domain)
- level 1 (2.5 km): 370,112 cells (22.5% of domain)
- Level $2(1.25 \mathrm{~km})$: 955,072 cells (14.6% of domain)
- Level 3 (625 m): 2,065,536 cells (7.88% of domain)

Mesh Resolution

管) $\frac{1}{2}$ University of 28 BRISTOL

Parallel scaling, Antarctica benchmark

(Preliminary scaling result - includes I/O and serialized initialization)

BTsTMES

Linear Solvers - GAMG vs. Geometric MG

Conclusions

- Fine (sub $1-\mathrm{km}$) resolution required to get grounding lines right
- AMR is a natural fit for this problem
- Split advective/diffusive approach to temporal evolution looked promising, but was eventually insufficient.
- "SSA"" modified L1L2 approach improves stability, appears to be "good enough" for grounding lines and fast-flowing ice streams and shelves.

BISICLES - Next steps

- More work with linear and nonlinear velocity solves.
- PETSc/AMG linear solvers look promising (in progress)
- Revisit semi-implicit time-discretization for stability, accuracy.
- Finish coupling with existing Glimmer-CISM code and CESM
- Full-Stokes for grounding lines?
- Embedded-boundary discretizations for GL's and margins.
- Performance/scaling optimization and autotuning.
- Refinement in time?

Acknowledgements:

- US Department of Energy Office of Science (ASCR) funded BISICLES project
- US Department of Energy Office of Science (ASCR/BER) SciDAC applications program (PISCEES)
- Steph Cornford, Tony Payne at the University of Bristol
- Bill Lipscomb, Doug Ranken, Stephen Price (LANL)
- Mark Adams (Columbia University)

Extras

Interface with Glimmer-CISM

- Glimmer-CISM has coupler to CESM, additional physics
- Well-documented and widely accepted
- Our approach - couple to Glimmer-CISM code as an alternate "dynamical core"
- Allows leveraging existing Glimmer-CISM capabilities
- Use the same coupler to CESM
- BISICLES code sets up within Glimmer-CISM and maintains its own storage, etc.
- Communicates through defined interface layer
- Instant access to a wide variety of test problems
- Interface development almost complete
- Part of larger alternative "dycore" discussion for Glimmer-CISM

Block-Structured Local Refinement

- Refined regions are organized into rectangular patches.

- Algorithmic advantages:
- Build on mature structured-grid discretization methods.
- Low overhead due to irregular data structures, relative to single structured-grid algorithm.

Los Alamos
NATIONAL LABORATORY

Models and Approximations

- Full-Stokes

- Best fidelity to ice sheet dynamics
- Computationally expensive (full 3D coupled nonlinear elliptic equations)

- Approximate Stokes

- Use scaling arguments to produce simpler set of equations
- Common expansion is in ratio of vertical to horizontal length scales $\left(\varepsilon=\frac{[h]}{[l]}\right)$
- E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $0\left(\varepsilon^{2}\right)$
- Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)
- Depth-integrated
- Special case of approximate Stokes with 2D equation set ("Shelfy-stream")
- Easiest to work with computationally
- Generally less accurate

"L1L2" Model (Schoof and Hindmarsh, 2010)

- Asymptotic expansion in 2 flow parameters:
- ε-- ratio of length scales $\frac{[h]}{[x]}$
- λ - ratio of shear to normal stresses $\frac{\left[\tau_{\text {shear }}\right]}{\left[\tau_{\text {normal }}\right]}$
- Large λ : shear-dominated flow
- Small λ : sliding-dominated flow
- Blatter-Pattyn approximates full-Stokes to $O\left(\varepsilon^{2}\right)$ for all λ regimes
- Asymptotic expansion: (e.g. $u(x, z)=u_{0}+\varepsilon u_{1}+O\left(\varepsilon^{2}\right)$)
- Leading order velocity term: $u_{0}=u_{0}(x)$ (no vertical dependence)
- Don't need shear stresses to $O\left(\varepsilon^{2}\right)$ to compute velocity to $O\left(\varepsilon^{2}\right)$
- Provides basis for depth-integrated approach
- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
- Expansion in ε-- ratio of length scales $\frac{[h]}{[x]}$
- Computing velocity to $O\left(\varepsilon^{2}\right)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- Similar formal accuracy to Blatter-Pattyn $O\left(\varepsilon^{2}\right)$
- Recovers proper fast- and slow-sliding limits:
- SIA $\left(1 \ll \lambda \leq \varepsilon^{-1 / n}\right)$-- accurate to $O\left(\varepsilon^{2} \lambda^{n-2}\right)$
- SSA $(\varepsilon \leq \lambda \leq 1)$ - accurate to $O\left(\varepsilon^{2}\right)$

BISICLES results - Grounding line study

- Bedrock topography based on Katz and Worster (2010)
- Evolve initially uniform-thickness ice to steady state
- Repeatedly add refinement and evolve to steady state
- G.L. advances with finer resolution
- Appear to need better than 1 km

Discretizations

- Baseline model is the one used in Glimmer-CISM:
- Logically-rectangular grid, obtained from a time-dependent uniform
 mapping.
- 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
- Advection-diffusion equation for temperature.

$$
\begin{gathered}
\frac{\partial H}{\partial t}=b-\nabla \cdot H \overline{\mathbf{u}} \\
\frac{\partial T}{\partial t}=\frac{k}{\rho c} \nabla^{2} T-\mathbf{u} \cdot \nabla T+\frac{\Phi}{\rho c}-w \frac{\partial T}{\partial z}
\end{gathered}
$$

- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

Nonlinear Solvers

- Most computational effort spent in nonlinear ice velocity solve.
\square Picard iteration:
- Robust
- Simple to implement
- Slow (but steady) convergence
\square Jacobian-free Newton-Krylov (JFNK):
- More complex to implement
- Works best with decent initial guess
- Rapid convergence
- Well-suited for Chombo AMR elliptic solvers
- Approach - use Picard iteration initially, then switch to JFNK when convergence slows

Nonlinear Solvers (cont)

Nonlinear Solver Convergence

BTsTeLes

BISICLES Results

- Ice-stream Simulation

[based on Pattyn et al (2008)]:

- High resolution is required to accurately resolve the ice stream.
- AMR simulation allows high resolution around the ice stream at a fraction of the cost of a uniformly refined mesh.

Max: 0.02469
Min: $1.237 \mathrm{e}-05$

鬲造 University of 2.29 BRISTOL

Numerical Accuracy and Convergence

x-velocity AMR Convergence
L1-norm

x-velocity AMR Convergence

x-velocity AMR Convergence

Continental-scale: Antarctica

- Ice2sea geometry
- Temperature field from Pattyn and Gladstone

EERKELEY LAE

