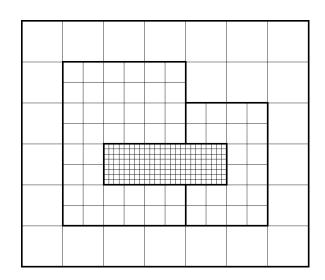
Resolving Grounding Line Dynamics with the BISICLES AMR Ice Sheet Model

Dan Martin Lawrence Berkeley National Laboratory

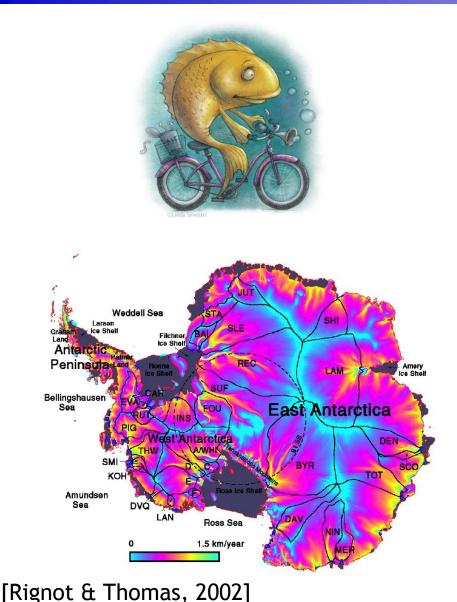
CESM-LIWG Meeting June 21, 2012

Berkeley-ISICLES (BISICLES)

- DOE ISICLES-funded project to develop a scalable adaptive mesh refinement (AMR) ice sheet model/dycore
 - Local refinement of computational mesh to improve accuracy
- Use Chombo AMR framework to support block-structured AMR
 - Support for AMR discretizations
 - Scalable solvers
 - Developed at LBNL
 - DOE ASCR supported (FASTMath)
- Interface to CISM (and CESM) as an alternate dycore
- Collaboration with LANL and Bristol (U.K.)
- Continuation in SciDAC-funded PISCEES effort



Why is this useful? (another BISICLE for another fish?)



Ice sheets -- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)

- Antarctica is really big too big to resolve at that level of resolution.
- Large regions where such fine resolution is unnecessary (e.g. East Antarctica)
- Well-suited for adaptive mesh refinement (AMR)
- Problems still large: need good parallel efficiency
- Dominated by nonlinear coupled elliptic system for ice velocity solve: good linear and nonlinear solvers

BISICLES: Models and Approximations

Physics: Non-Newtonian viscous flow: $\mu(\dot{\epsilon^2}, T) = A(T)(\dot{\epsilon^2})^{\frac{(1-n)}{2}}$

- Full-Stokes
 - Best fidelity to ice sheet dynamics
 - Computationally expensive (full 3D coupled nonlinear elliptic equations)
- Approximate Stokes
 - Use scaling arguments to produce simpler set of equations
 - Common expansion is in ratio of vertical to horizontal length scales $(\varepsilon = \frac{\lfloor h \rfloor}{\lfloor H \rfloor})$
 - E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $O(\epsilon^2)$
 - Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

Depth-integrated

- "Shallow Ice" and "Shallow-Shelf" approximations (accurate to $O(\varepsilon)$)
- Special case of approximate Stokes with 2D equation set
- Easiest to work with computationally, generally less accurate

"L1L2" Model (Schoof and Hindmarsh, 2010).

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
 - Expansion in ε and $\lambda = \frac{[\tau_{shear}]}{[\tau_{normal}]}$ (ratio of shear & normal stresses)
 - Large $\lambda :$ shear-dominated flow
 - Small $\boldsymbol{\lambda}:$ sliding-dominated flow
 - Computing velocity to $O(\varepsilon^2)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- □ Similar formal accuracy to Blatter-Pattyn $O(\varepsilon^2)$
 - Recovers proper fast- and slow-sliding limits:
 - SIA $(1 \ll \lambda \leq \varepsilon^{-1/n})$ -- accurate to $O(\varepsilon^2 \lambda^{n-2})$
 - SSA $(\varepsilon \leq \lambda \leq 1)$ accurate to $O(\varepsilon^2)$

"L1L2" Model (Schoof and Hindmarsh, 2010), cont.

- □ Use this result to construct a computationally efficient scheme:
 - 1. Approximate constitutive relation relating grad(u) and stress field τ with one relating $grad(u|_{z=b})$, vertical shear stresses τ_{xz} and τ_{xz} given by the SIA / lubrication approximation and other components $\tau_{xx}(x, y, z)$, $\tau_{xy}(x, y, z)$, etc
 - 2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $grad(u|_{z=b})$ and $grad(z_s)$, ice thickness, etc
 - 3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $u|_{z=b}(x, y)$
 - 4. u(x, y, z) can be reconstructed from $u|_{z=b}(x, y)$

Temporal Discretization

Update equation for H: $\frac{\partial H}{\partial t} + \nabla \cdot (\vec{u}H) = S$

- □ "looks" like hyperbolic advection equation (explicit scheme, Courant stability -- $\Delta t \propto \Delta x$)
- □ Velocity field has ∇H piece diffusion equation for H ($\Delta t \propto \Delta x^2$!)
- Strategy (Cornford) try to factor out diffusive flux and discretize as an advection-diffusion equation:

$$\Box \quad \vec{F} = \vec{u}H = \vec{F}_{advective} + \vec{F}_{diffusive}$$

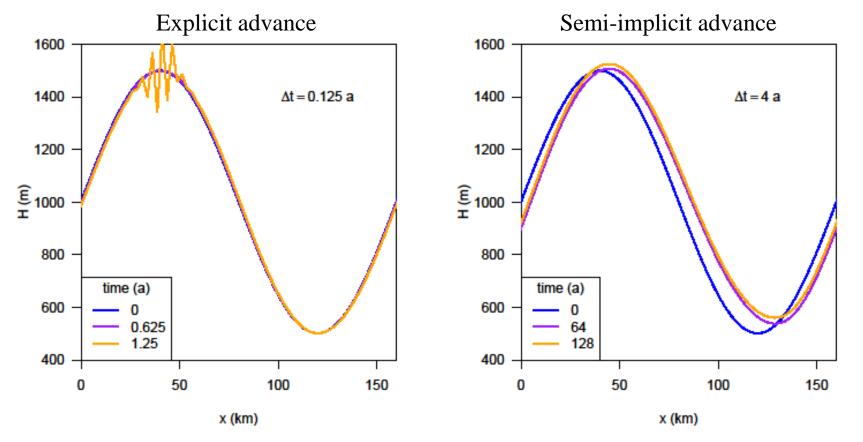
$$\Box \quad \vec{F}_{diffusive} = -D \ \nabla H$$

$$\Box \quad \text{Now solve: } \frac{\partial H}{\partial t} + \nabla \cdot \vec{F}_{advective} = \nabla \cdot (D \nabla H) + S$$

- □ Advective fluxes: explicit update using unsplit 2nd Order PPM scheme
- Diffusive fluxes: implicit update (Backward Euler for now)

Temporal Discretization (cont)

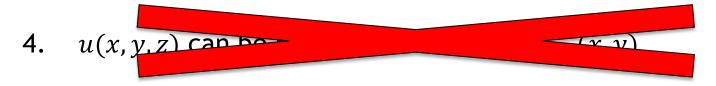
- □ Test case based on ISMIP-HOM A geometry
- $\Box \quad \Delta x = 2.5 \ km, \Delta t_{CFL} = 5 \ a$



 \Box Unfortunately, still run into stability issues finer than $\Delta x < 0.5 \ km!$

Modified "L1L2" Model (SSA*)

- Use this result to construct a computationally efficient scheme:
 - 1. Approximate constitutive relation relating grad(u) and stress field τ with one relating $grad(u|_{z=b})$, vertical shear stresses τ_{xz} and τ_{xz} given by the SIA / lubrication approximation and other components $\tau_{xx}(x, y, z)$, $\tau_{xy}(x, y, z)$, etc
 - 2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $grad(u|_{z=b})$ and $grad(z_s)$, ice thickness, etc
 - 3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $u|_{z=b}(x, y)$

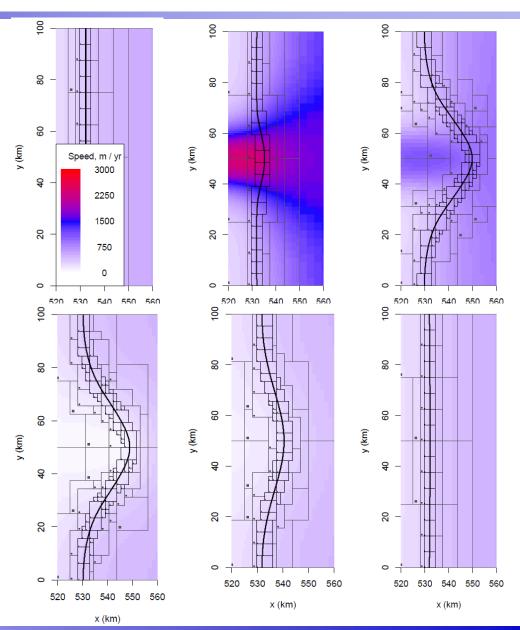


4. Use $u(x, y, z) = u|_{z=b}(x, y)$ (neglect vertical shear in flux velocity)

BISICLES Results - MISMIP3D

Experiment P75R: (Pattyn et al (2011)

- Begin with steady-state (equilibrium) grounding line.
- Add Gaussian slippery spot perturbation at center of grounding line
- □ Ice velocity increases, GL advances.
- □ After 100 years, remove perturbation.
- Grounding line should return to original steady state.
- □ Figures show AMR calculation:
 - $\Delta x_0 = 6.5 km$ base mesh,
 - 5 levels of refinement
 - Finest mesh $\Delta x_4 = 0.195 km$.
 - t = 0, 1, 50, 101, 120, 200 *yr*
- Boxes show patches of refined mesh.
- GL positions match Elmer (full-Stokes)



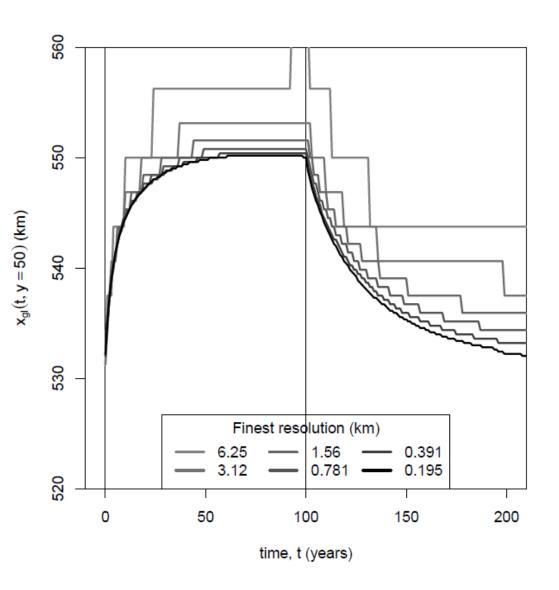
Office of Science

University of

BRISTOL

MISMIP3D (cont)

- Plot shows grounding line position x_{GL} at y = 50km vs. time for different spatial resolutions.
- $\Box \quad \Delta x = 0.195 km \rightarrow 6.25 km$
- Appears to require finer than
 1 km mesh to resolve
 dynamics
- $\Box \quad \text{Converges as } O(\Delta x)$ (as expected)



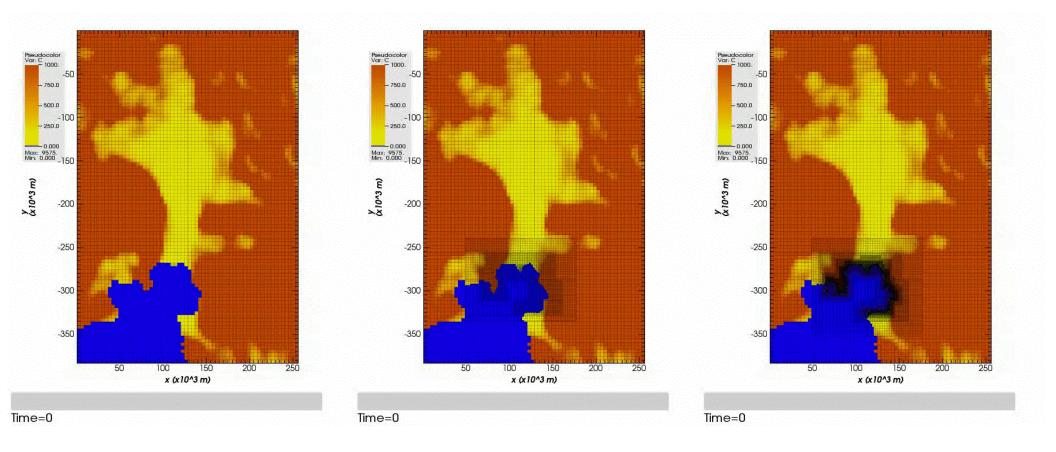
BISICLES Results - Pine Island Glacier

- □ Cornford, et al, JCP (2011, submitted)
- PIG configuration from LeBrocq:
 - Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
 - AGASEA thickness
 - Isothermal ice, A=4.0× $10^{-17} Pa^{-\frac{1}{3}}m^{-1/3}a$
 - Basal friction chosen to roughly agree with Joughin (2010) velocities
- Specify melt rate under shelf:

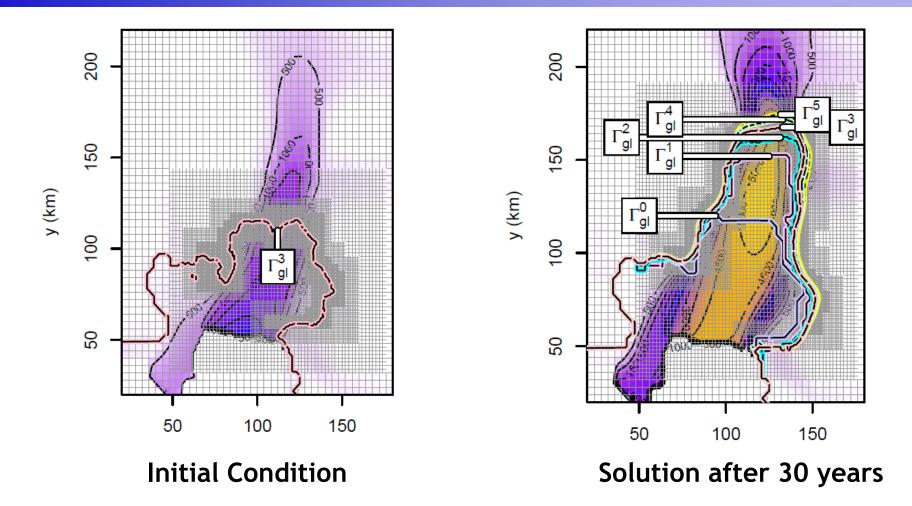
•
$$M_s = \begin{cases} 0 & H < 50m \\ \frac{1}{9}(H - 50) & 50 \le H \le 500m \\ 50 & H > 500m \end{cases}$$
 m/a

- Constant surface flux = 0.3 m/a
- Evolve problem refined meshes follow the grounding line.
- Calving model and marine boundary condition at calving front

PIG (cont)



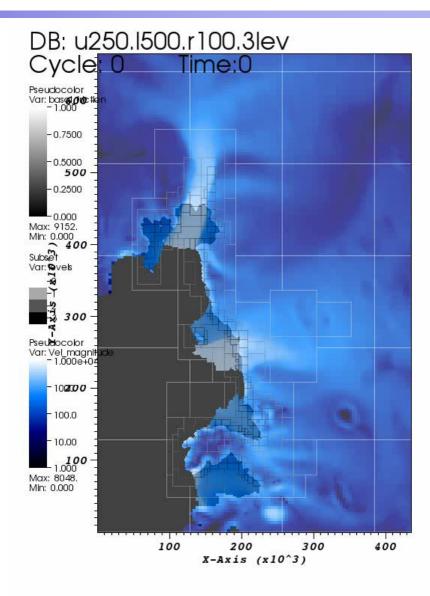
PIG, cont



Coloring is ice velocity, Γ_{gl} is the grounding line. Superscripts denote number of refinements. Note resolution-dependence of Γ_{gl}

Amundsen Sea Sector

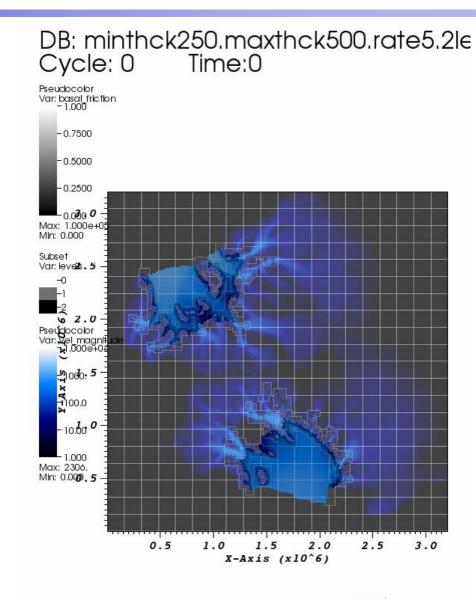
- Regional Model
- Heavy subshelf melting drives retreat (up to 100 m/a)
- Melt rate function of depth (strongest melting near GL)
- 4 km base mesh
- 3 levels of refinement (2km, 1km, 500m)
- Courtesy of Steph Cornford



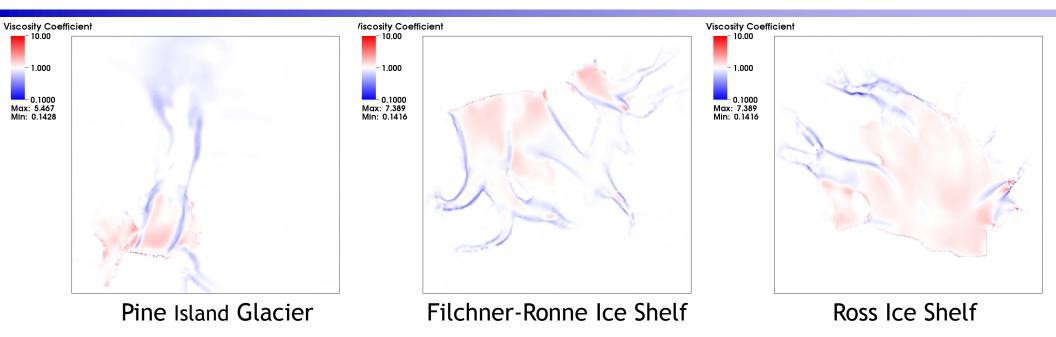
user: ggslc Mon Jun 18 14:27:20 2012

Filchner-Ronne/Ross

- Light melting (< 5 m/a)
- 5 km base resolution
- 2 refinement levels (2.5km, 1.25km)
- "few hours" for 32 processors to evolve for 50 yrs
- Courtesy of Steph Cornford



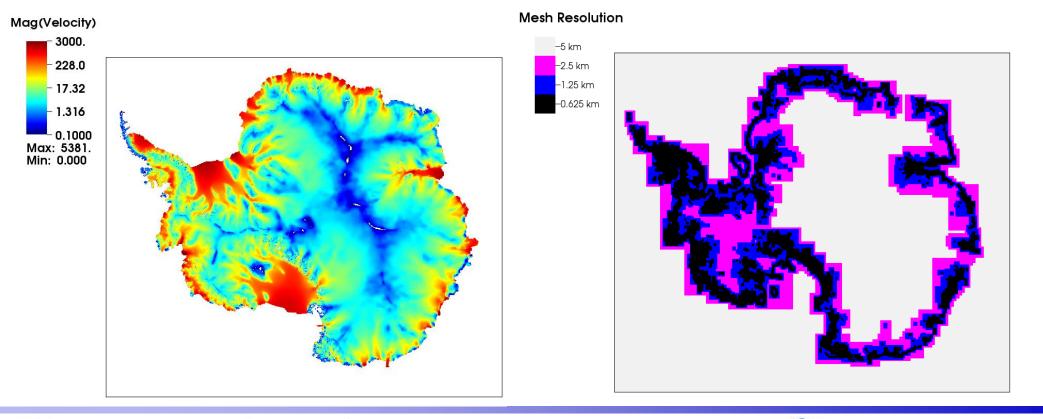
Simple Rheology/Damage model



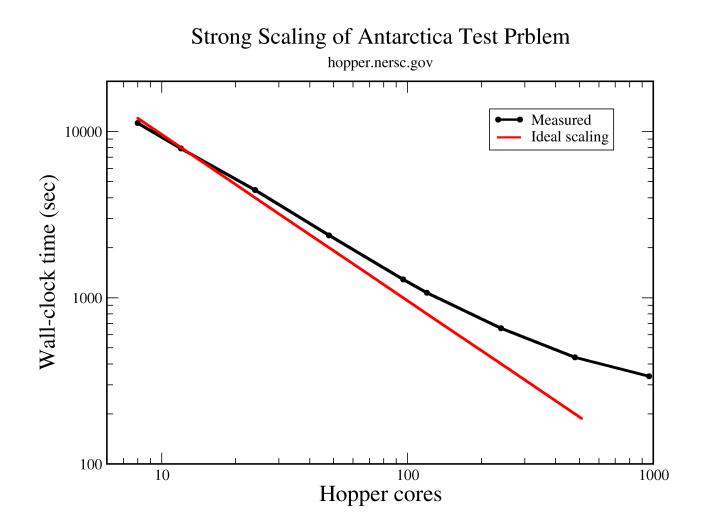
- Solve control problem for ice initial condition
- Include new parameter φ which multiplies viscosity
- $\phi < 1$ (blue) = softening
- $\phi > 1$ (red) = hardening

Antarctica (Ice2Sea)

- Refinement based on Laplacian(velocity), grounding lines
- 5 km base mesh with 3 levels of refinement
 - base level (5 km): 409,600 cells (100% of domain)
 - level 1 (2.5 km): 370,112 cells (22.5% of domain)
 - Level 2 (1.25 km): 955,072 cells (14.6% of domain)
 - Level 3 (625 m): 2,065,536 cells (7.88% of domain)

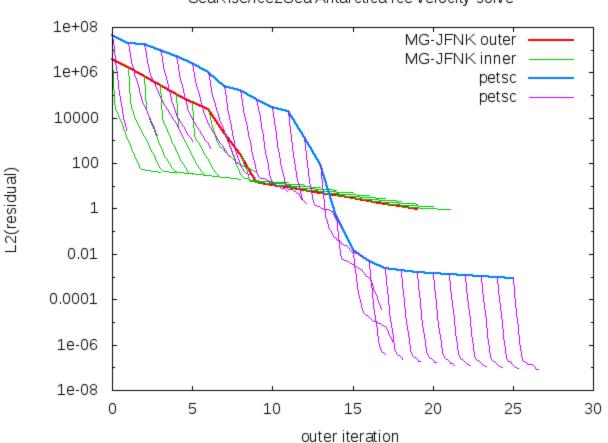


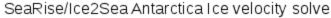
Parallel scaling, Antarctica benchmark



(Preliminary scaling result – includes I/O and serialized initialization)

Linear Solvers - GAMG vs. Geometric MG





Conclusions

- □ Fine (sub 1-km) resolution required to get grounding lines right
- □ AMR is a natural fit for this problem
- Split advective/diffusive approach to temporal evolution looked promising, but was eventually insufficient.
- "SSA*" modified L1L2 approach improves stability, appears to be "good enough" for grounding lines and fast-flowing ice streams and shelves.

BISICLES - Next steps

- □ More work with linear and nonlinear velocity solves.
 - PETSc/AMG linear solvers look promising (in progress)
- □ Revisit semi-implicit time-discretization for stability, accuracy.
- □ Finish coupling with existing Glimmer-CISM code and CESM
- □ Full-Stokes for grounding lines?
- □ Embedded-boundary discretizations for GL's and margins.
- Performance/scaling optimization and autotuning.
- □ Refinement in time?

Acknowledgements:

- US Department of Energy Office of Science (ASCR) funded BISICLES project
- US Department of Energy Office of Science (ASCR/BER) SciDAC applications program (PISCEES)
- □ Steph Cornford, Tony Payne at the University of Bristol
- □ Bill Lipscomb, Doug Ranken, Stephen Price (LANL)
- □ Mark Adams (Columbia University)

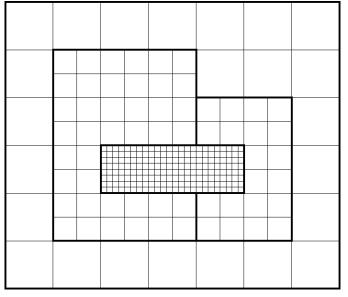
Extras

Interface with Glimmer-CISM

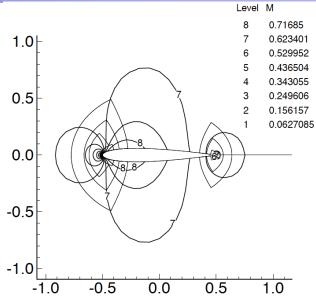
- □ Glimmer-CISM has coupler to CESM, additional physics
 - Well-documented and widely accepted
- Our approach couple to Glimmer-CISM code as an alternate "dynamical core"
 - Allows leveraging existing Glimmer-CISM capabilities
 - Use the same coupler to CESM
 - BISICLES code sets up within Glimmer-CISM and maintains its own storage, etc.
 - Communicates through defined interface layer
 - Instant access to a wide variety of test problems
 - Interface development almost complete
 - Part of larger alternative "dycore" discussion for Glimmer-CISM

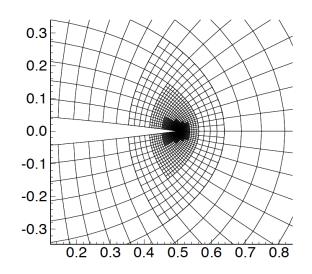
Block-Structured Local Refinement





- Build on mature structured-grid discretization methods.
- Low overhead due to irregular data structures, relative to single structured-grid algorithm.





Office of Science

Models and Approximations

Full-Stokes

- Best fidelity to ice sheet dynamics
- Computationally expensive (full 3D coupled nonlinear elliptic equations)

Approximate Stokes

- Use scaling arguments to produce simpler set of equations
- Common expansion is in ratio of vertical to horizontal length scales ($\varepsilon = \frac{[h]}{[I]}$)
- E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $O(\epsilon^2)$
- Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

Depth-integrated

- Special case of approximate Stokes with 2D equation set ("Shelfy-stream")
- Easiest to work with computationally
- Generally less accurate

"L1L2" Model (Schoof and Hindmarsh, 2010)

- Asymptotic expansion in 2 flow parameters:
 - \mathcal{E} -- ratio of length scales $\frac{[h]}{[x]}$
 - λ ratio of shear to normal stresses $\frac{[\tau_{shear}]}{[\tau_{normal}]}$
 - Large $\lambda :$ shear-dominated flow
 - Small $\boldsymbol{\lambda}:$ sliding-dominated flow
- □ Blatter-Pattyn approximates full-Stokes to $O(\varepsilon^2)$ for all λ regimes
- □ Asymptotic expansion: (e.g. $u(x,z) = u_0 + \varepsilon u_1 + O(\varepsilon^2)$)
 - Leading order velocity term: $u_0 = u_0(x)$ (no vertical dependence)
 - Don't need shear stresses to $O(\varepsilon^2)$ to compute velocity to $O(\varepsilon^2)$
 - Provides basis for depth-integrated approach

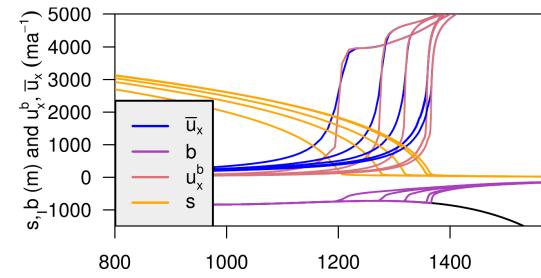
"L1L2" Model (Schoof and Hindmarsh, 2010).

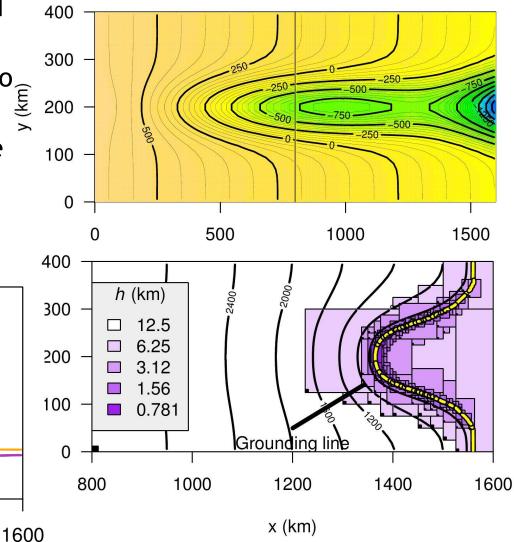
- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
 - Expansion in ε -- ratio of length scales $\frac{[h]}{[x]}$
 - Computing velocity to $O(\varepsilon^2)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- □ Similar formal accuracy to Blatter-Pattyn $O(\varepsilon^2)$
 - Recovers proper fast- and slow-sliding limits:
 - SIA $(1 \ll \lambda \le \varepsilon^{-1/n})$ -- accurate to $O(\varepsilon^2 \lambda^{n-2})$
 - SSA $(\varepsilon \le \lambda \le 1)$ accurate to $O(\varepsilon^2)$

U.S. DEPARTMENT OF Office of Science

BISICLES results - Grounding line study

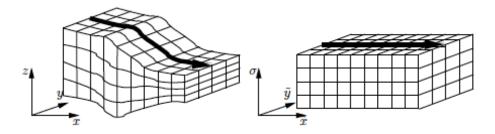
- Bedrock topography based on Katz and Worster (2010)
- Evolve initially uniform-thickness ice to steady state
- Repeatedly add refinement and evolve to steady state
- □ G.L. advances with finer resolution
- □ Appear to need better than 1 km





Discretizations

- Baseline model is the one used in Glimmer-CISM:
 - Logically-rectangular grid, obtained from a time-dependent uniform mapping.
 - 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
 - Advection-diffusion equation for temperature.
- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.



$$\frac{\partial H}{\partial t} = b - \nabla \cdot H \overline{\mathbf{u}}$$

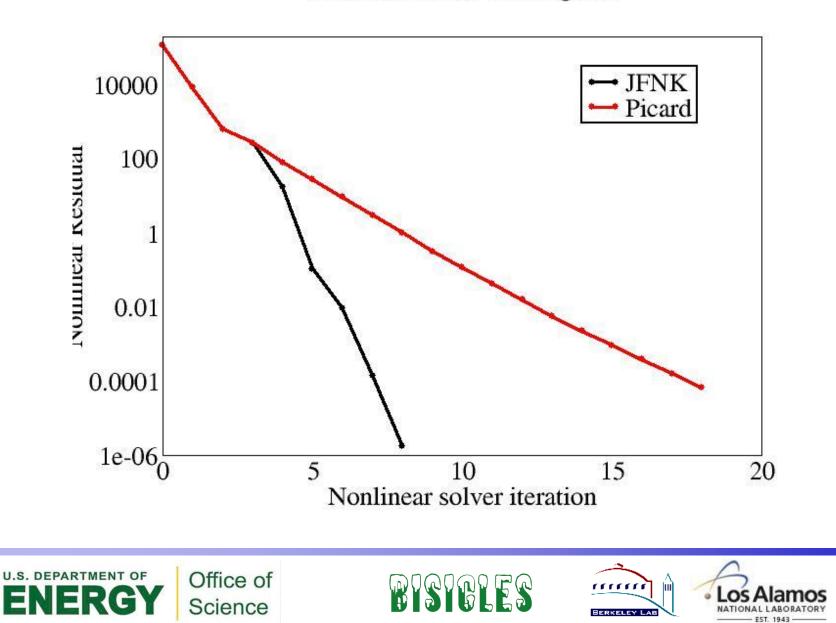
$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \nabla^2 T - \mathbf{u} \cdot \nabla T + \frac{\Phi}{\rho c} - w \frac{\partial T}{\partial z}$$

Nonlinear Solvers

- Most computational effort spent in nonlinear ice velocity solve.
- Picard iteration:
 - Robust
 - Simple to implement
 - Slow (but steady) convergence
- □ Jacobian-free Newton-Krylov (JFNK):
 - More complex to implement
 - Works best with decent initial guess
 - Rapid convergence
 - Well-suited for Chombo AMR elliptic solvers
- Approach use Picard iteration initially, then switch to JFNK when convergence slows

Nonlinear Solvers (cont)

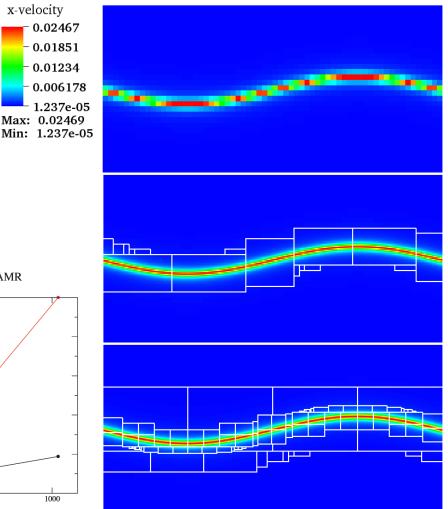
Nonlinear Solver Convergence

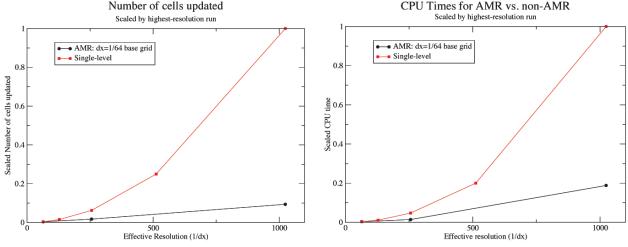


University of BRISTOL

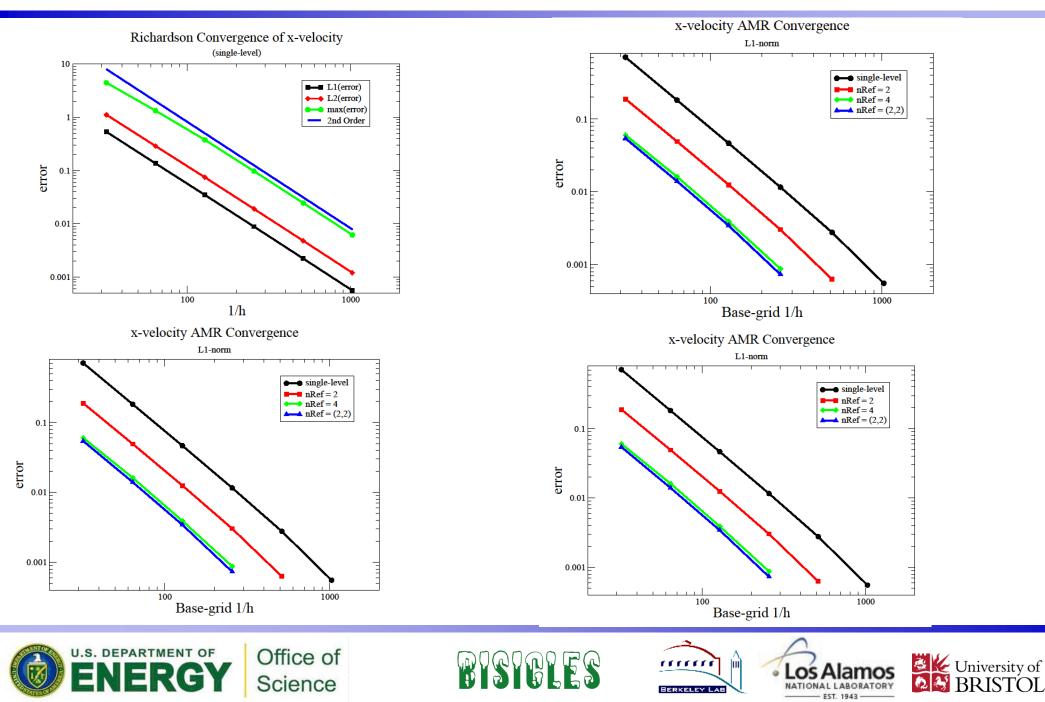
BISICLES Results

- Ice-stream Simulation
 [based on Pattyn et al (2008)]:
 - High resolution is required to accurately resolve the ice stream.
 - AMR simulation allows high resolution around the ice stream at a fraction of the cost of a uniformly refined mesh.





Numerical Accuracy and Convergence



Continental-scale: Antarctica

- Ice2sea geometry
- Temperature field from Pattyn and Gladstone

