Preconditioning Techniques Based on Domain Decomposition Methods

Duk-Soon Oh

Courant Institute of Mathematical Sciences New York University

June 21, 2012

Joint work with David Holland(NYU), Kate Evans(ORNL), Andy Salinger(SNL), Irina Kalashnikova(SNL), and Steve Price(LANL)

Introduction

Domain decomposition methods:

the process of subdividing the solution of a large system into smaller subproblems whose solutions can be used to produce a preconditioner for the system of equations that results from discretizing the PDE on the entire domain

Idea of Domain Decomposition Methods

- Decompose the domain Ω into overlapping or non-overlapping subdomains.
- Assign one or several subdomains to each processor of parallel machine.

- In each iteration:
 - In each subdomain, solve small local subproblems.
 - In addition, solve one small global problem.

Motivation

Conventional methods

we usually need additional information, e.g., coarse coordinate information.

- we need quite regular meshes.
- it is hard to apply for irregular subdomains.

Alternative Approach

Generalized Dryja, Smith, Widlund (GDSW) coarse space technique

- this technique is based on energy minimizing discrete harmonic extensions.
- it has been applied to many applications
 - almost incompressible elasticity (Dohrmann, Widlund)

- Reissner-Mindlin plates (Lee)
- Raviart-Thomas vector fields (Oh)

Alternative Approach

Advantage

- the method can be implemented in an algebraic manner we do not need any coarse discretization.
- it works well for irregular subdomains and unstructured meshes.
- it has well-established theoretical results, e.g., upper bounds of condition number.

Discrete Harmonic Extension

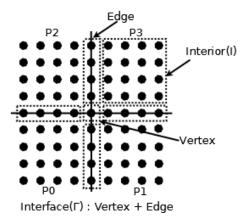
A vector $u^{(i)} := [u_I^{(i) \, T} \, u_{\Gamma}^{(i) \, T}]^T$ is said to be discrete harmonic on Ω_i if $A_{II}^{(i)} \, u_I^{(i)} + A_{I\Gamma}^{(i)} \, u_{\Gamma}^{(i)} = 0.$

 $u^{(i)}$ is completely defined by $u_{\Gamma}^{(i)}$.

The discrete harmonic extension has the minimal energy property.

$$\mathbf{a}(\mathbf{u},\mathbf{u}) = \min_{\mathbf{v}|_{\Gamma} = \mathbf{u}_{\Gamma}} \mathbf{a}(\mathbf{v},\mathbf{v})$$

Coarse Component



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Coarse Component

- R₀ : restriction to coarse space
 - We choose one coarse edge or vertex and give 1 to the nodes on the edge or vertex.

- We assign 0 to other nodes on the interface.
- We use the discrete harmonic extension for interior parts.
- $\bullet A_0 : R_0 A R_0^T$

We note that this coarse component can be implemented in an algebraic manner. We do not need any coarse discretizations.

Additive Schwarz Perconditioner

Additive Schwarz Method for SPD systems

$$P^{-1} = R_0^T A_0^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i$$

- A_0 : coarse matrix (restriction to the coarse space)
- A_i : local matrix (restriction to overlapping subdomain Ω'_i)
- R₀ : restriction to coarse space
- R_i : restriction to overlapping subdomain Ω'_i

Restricted Additive Schwarz Perconditioner

Restricted Additive Schwarz Method for indefinite or nonsymmetric systems

$$P^{-1} = R_0^T A_0^{-1} R_0 + \sum_{i=1}^N \widetilde{R}_i^T A_i^{-1} R_i$$

- *A*₀ : coarse matrix (restriction to the coarse space)
- A_i : local matrix (restriction to extended subdomain Ω'_i)
- R₀ : restriction to coarse space
- R_i : restriction to overlapping subdomain Ω'_i
- \widetilde{R}_i : restriction to subdomain Ω_i

Numerical Experiments

5km Greenland Ice-Sheet 1 subdomain per each processor, preconditioned GMRES local solver : Amesos KLU coarse solver : Amesos KLU

# of processors	64	128	256	512
Ifpack ILU	227	269	310	307
DD	17	20	21	29

Table:	iteration	counts
--------	-----------	--------