

Preliminary results of the CESM-NEMO coupling

Pier Giuseppe Fogli, Antonio Navarra, Simona Masina (CMCC) Bill Large, Mariana Vertenstein, David Bailey, Tony Craig (NCAR) 17th Annual CESM Workshop Breckenridge, CO June 18-21, 2012

1. Motivation

- Define a coherent development roadmap for the next generation models
- Flexible structure to expand toward Earth System Models
- Better sustainability (improved numerical methods, new computer architectures, processing tools)
- Leveraging partnerships and collaborations
- Large community to share experiences and developments

2. The NEMO ocean model

NEMO (Nucleus for European Modelling of the Ocean) http://www.nemo-ocean.eu

- Developed by a consortium of EU research centers: **CMCC** (IT), INGV (IT), CNRS (FR), Mercator-Ocean (FR), NERC (UK) & UKMO (UK)
- Solves the primitive equations on an orthogonal curvilinear coordinate system
- Horizontal grid: Arakawa C grid
- Vertical coordinate: z (full/partial steps), s or a mix z-s
- 2° order centered FD scheme; filtered leap-frog
- EOS: Jackett and McDougall (1995)
- Several choices available for the ocean physics
- LIM2/LIM3 sea ice modules; dynamics and thermodynamics of sea ice
- TOP module for passive tracers and interface to marine biogeochemistry
- Implemented on the global domain and on regional domains (i.e. Mediterranean Sea)
- Available global resolutions: 4, 2, 1, 0.5, 0.25 degrees (ORCA tripole grid)
- Parallelization based on domain decomposition through MPI (no OpenMP yet)

3. CESM-NEMO coupling: the sea ice model

Coupling NEMO to the CESM, foundamental questions:

Q1. Which sea ice model do we want to use? LIM vs. CICE

Q2. Which horizontal grid coordinates do we want to use? POP vs. NEMO

Q3. What are the fields that we need to exchange with the coupler? Units & sign convention (from Q2 & Q3) On which grid do we want to exchange these fields? T vs. U vs. ?

Q1. Which sea ice model do we want to use? LIM vs. CICE

• LIM is not a stand-alone model, it's a module available as an option in the NEMO code (in CESM the sea ice component has to be a model on its own)

- In CESM atmosphere-sea ice fluxes are computed by CICE (LIM does not compute any flux)
- CICE (partly!) supports the NEMO tripole grid

Q1. Which sea ice model can we use? A1. CICE

3. CESM-NEMO coupling: the horizontal grid

Q2. Which horizontal grid coordinates do we want to use? POP vs. NEMO

 POP coordinates → Rebuild NEMO grids & metrics, bathymetry, initial/boundary conditions, ...

 NEMO coordinates → Mapping (weights) & domain files + CICE files adaptation

Q2. Which horizontal grid coordinates do we want to use? A2. NEMO grid

• On what grid do we want to exchange these fields? T vs. U vs. ?

CPL allows only 1 grid/mask/area per model \rightarrow all the fields have to be exchanged on the same grid

Q. On which grid do we want to exchange these fields? A. Central T points

3. CESM-NEMO coupling: the horizontal grid

179,148

179,147

179,146

180.148

180,147

181,12

NEMO tripole grid (ORCA2: ~2 deg)

- Added to the CESM supported grids: tn2v1
- T-fold type: poles on central T points (need to complete support in CICE)
- Land point used to increase the resolution over marginal/internal seas

0.146

92.140

0,147

0.146

1,147

2.146

3. CESM-NEMO coupling: the coupling interface

Q3. What are the fields that we need to exchange with the coupler?

Unit system: $POP \rightarrow cgs$ Sign convention: $POP \rightarrow positive downward$

 $\begin{array}{l} \text{NEMO} \rightarrow \text{mks} \\ \text{NEMO} \rightarrow \text{positive downward} \end{array}$

$OCN \rightarrow CPL$												
Name	Meaning	Units		Positive		Grid		Target mod	Comment			
		OCN	CPL	OCN	CPL	Source	Target					
UVEL	u horiz. velocity	cm/s	m/s	-	-	U > T+rot	Atm, T+rot > U	Atm+Ice				
VVEL	v horiz. velocity	cm/s	m/s	-	-	U > T+rot	Atm, T+rot > U	Atm+Ice				
SST	Sea Surf. Temperature	degC	Κ	-	-	Т	Atm, T	Atm+Ice				
SSS	Sea Surf. Salinity	g/g	ppt	-	-	Т	Т	Ice				
GRADPX	x horiz. surf. gradient	cm/cm	m/m	-	-	U > T+rot	T+rot > U	Ice				
GRADPY	y horiz. surf. gradient	cm/cm	m/m	-	-	U > T+rot	T+rot > U	Ice				
QFLUX	frazil sea ice freezing - melting heat flux	W/m ²	W/m ²	down	down	Т	Т	Ice	Need to add the computation in NEMO			
CO2FLUX	CO2 flux	kg/m²/s	kg/m²/s	down	down	Т	Atm	Atm	if ecosys mod is active			

3. CESM-NEMO coupling: the coupling interface

$\mathbf{CPL} \rightarrow \mathbf{OCN}$										
Name	Meaning	Units [*]	Positive	Grid	Source mod	Comment				
taux	Zonal wind/ice-ocean stress	N/m^2 (Pa) [×]	-	T > U+rot	Atm+Ice					
tauy	Meridional wind/ice-ocean stress	N/m^2 (Pa) [×]	-	T > U+rot	Atm+Ice					
snow	Water flux due to snow	kg/m²/s	down	Т	Atm					
rain	Water flux due to rain	kg/m²/s	down	Т	Atm					
evap	Evaporation flux	kg/m ² /s	down	Т	Atm					
meltw	Water flux due to snow/sea ice freezing/melting ⁼	kg/m ² /s	down	Т	Sea ice					
salt	Salt flux from melting sea ice	kg(s)/m ² /s	down	Т	Sea ice					
swnet	Net short-wave heat flux	W/m ²	down	Т	Atm+Ice ^{&}					
sen	Sensible heat flux	W/m ²	down	Т	Atm					
lwup	Longwave radiation (up)	W/m ²	down	Т	Atm					
lwdn	Longwave radiation (down)	W/m ²	down	Т	Atm					
melth	Heat flux due to snow/sea ice melting	W/m ²	down	Т	Sea ice					
ifrac	Ice fraction	0-1	-	Т	Sea ice					
roff	River runoff flux	kg/m²/s	down	Т	Land					
ioff	Ice runoff flux due to Land-Model	kg/m ² /s	down	Т	Land					
pslv	Sea-level pressure	Ра	-	Т	Atm					
duu10n	10m wind speed squared	m^2/s^2	-	Т	Atm					
co2	Bottom atm level CO ₂	$ppmv^+$	-	Т	Atm	If ecosystem mod is active				

4. Current status

☑ Integration of NEMO in CESM

- NEMO tripole grid added ; domain and mapping files created
- New compsets created (C_NORMAL_YEAR_NEMO, G_NORMAL_YEAR_NEMO, B_2000_NEMO)
- NEMO source code integrated in CESM
- NEMO build in the CESM infrastructure
- CICE adaptation (to be completed!)
- Set up of the running environment
- ☑ Technical tests
 - Bit-for-bit reproducibility
 - Exact restart
- □ Exact restart for CICE on the NEMO tripole grid
- □ Model validation

5. Preliminary results

- C_NORMAL_YEAR_NEMO compset
- 10 years run
- Horizontal resolution: T62_tn2v1 (tn2v1 -> ORCA2 grid, 180x148, ~2 deg)
- Vertical resolution: 31 vertical levels
- Initial conditions: T & S from Levitus; ocean at rest
- Forcings: COREv2
- Comparison with C_NORMAL_YEAR (POP2), T62_tx1v1

CNY - Global Annual Mean SST [degC]

5. Preliminary results

Annual mean SST at year 10

NEMO

POP2

5. Preliminary results

Global annual mean total surface heat flux at year 10

CNY POP2 - SHF_TOT [W m⁻²] - Y10 200 80⁰N 160 120 40⁰N 80 40 **0**⁰ 0 -40 -80 40[°]S -120 -160 80°S

180[°]W

120[°]W

 $60^{\circ}W$

POP2

NEMO

CNY NEMO-POP2 - SHF_TOT [W n⁻²] - Y10

0°

0°

60⁰E

120⁰E

The best is yet to come! Stay tuned: piergiuseppe.fogli@cmcc.it Thanks