

Ocean physics and biogeochemistry

Matthew Long

Climate and Global Dynamics Division National Center for Atmospheric Research

and

G. Danabasoglu, S. Doney, P. Gent, M. Jochum, K. Lindsay, N. Lovenduski, J. K. Moore, S. Peacock

> Ocean Model Working Group Meeting Breckenridge, CO 19 June 2012

RCP8.5 21st century

Ocean uptake: circulation is rate limiting

Gas exchange timescale $(\tau = \frac{h}{k})$

Biological pump

Sarmiento & Gruber 2006

Nonlinear carbon chemisty

Carbon in seawater

$$CO_{2,gas} + H_2O + CO_3^{2-} \rightleftharpoons 2HCO_3^{-}$$

Sarmiento & Gruber 2006

21st century ocean sink

- Intense uptake in North Atlantic and Southern Ocean;
- Reduced outgassing in Equatorial Pacific.

$\begin{array}{l} \mbox{Climate response in 21st century ocean sink} \\ \mbox{RCP8.5 sea-air CO}_2 \mbox{ flux} \end{array}$

Climate-induced DIC anomaly

Ventilation rates

Meridional overturning circulation

- Poleward shift and slight intensification of Deacon Cell;
- Shoaling and reduction in North Atlantic overturning;
- AABW production reduced.

Mechanisms forcing climate response

Climate impact (full system minus constant climate integration)

Reductions in surface nutrient Zonal-mean surface nitrate

21st century ocean sink

Source waters

Sarmiento & Gruber [2006]

Summary

- Processes controlling ventilation rates are a fundamental contraint on nutrient cycles and transient tracer uptake.
- Ocean carbon sink stabilizes in the late 21st century under RCP8.5 due to chemistry feedbacks; climate feedbacks cause further reductions in sink strength.
- Differing circulation dynamics and biological response force different carbon cycle responses in the Southern Ocean and North Atlantic during the 21st century.

21st century ocean sink

Mechanisms forcing flux trends

Trends in coupled model Southern Hemisphere windstress

11-year running mean

Residual mean theory

Marshall and Radko, JPO, 2003

Southern Ocean CO₂ fluxes

Variable eddy-induced advection coefficient Upper ocean DIC budget (z > -100 m)

Variable eddy-induced advection coefficient

Trend in κ

Trend in eddy-induced DIC flux

Lovenduski et al., submitted to GRL