
Capturing Computer
Performance Variability in

CESM Experiments
Patrick Worley

Oak Ridge National Laboratory

17th Annual CESM Workshop
June 18-21, 2012
Breckenridge, CO

•  This work was sponsored by the Climate and Environmental Sciences Division of
the Office of Biological and Environmental Research and by the Office of Advanced
Scientific Computing Research, both in the Office of Science, U.S. Department of
Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

•  This work used resources of the Oak Ridge Leadership Computing Facility, located
in the National Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of the Department of
Energy under Contract DE-AC05-00OR22725 and of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

•  These slides have been authored by a contractor of the U.S. Government under
contract No. DE-AC52-07NA27344. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

And thanks to Marcia Branstetter and Kate Evans at Oak Ridge National Laboratory for
allowing me to collect data from their production runs.

 Acknowledgements

Performance Variability, Aspects of
1.  Significant differences in execution rate between similar jobs on the same

platform when using the same resource requests (e.g. processor count) and in
the same computing environment (system software versions, etc.)

a.  Due to the two jobs being run on processor subsets with different
‘topologies’, affecting communication performance?

b.  Due to different sets of concurrently running jobs competing for shared
resources (interconnect bandwidth? I/O?), and in different ways (see (a))?

c.  Due to one of the the jobs being allocated a resource that is running
suboptimally (‘slow compute node’)

Many possible sources, some not easily identified by user, so difficult to
diagnose.

Performance Variability, Aspects of
2.  Significant differences in execution rate during the execution of a single job

(not related to changes in the job’s execution characteristics)

a.  Due to changes in competition for shared resources as other jobs come and
go during the job?

This is an aspect of (1), but can be more difficult to diagnose than when two jobs
demonstrate static differences in execution rate.

3.  Significant differences in execution time or execution rate between similar jobs
on the same platform when using the same resource requests (e.g. processor
count) but over a period of timer during which things have changed: CESM
version, compiler version, communication library version, etc.

Some change is expected, but do not want a degradation in performance to pass
unnoticed. This may reflect a performance bug, and require regression to earlier
versions of the code or of the software stack.

Performance Variability, Implications of
1.  Jobs exceed requested time, and are aborted

a.  Some waste of allocation, depending on frequency of checkpoints

b.  Some waste of person time, as the failure is identified and required actions
taken

c.  Failed jobs are resubmitted to queue, and suffer typical queue delay,
slowing project productivity.

2.  Increased checkpoint frequency, to decrease loss in failed jobs, consumes
allocation (unproductively) in all jobs and is itself a performance variability
hotspot (I/O)

3.  Decreased job simulation time for a given wallclock request, to decrease failure
rate due to performance variability, requires submitting more jobs to achieve
same total simulation duration and thus spending more time in the queue waiting
to be scheduled. This also slows project productivity.

Performance Variability, Implications of
4.  Performance variability can mask application performance issues that should be

eliminated, and can be mistaken for (fictitious) issues that consume software
engineering time trying to correct.

5.  Performance benchmarks are not reliable indicators of production run
performance, and wallclock requirements:
–  Expensive to capture performance “envelope” (statistically significant

sampling and retesting to capture code and system changes)

–  Expensive to use production-like benchmarks (typical runtime, variety of
different code versions, variety of different configurations)

 therefore

a.  Users do not have dependable data for estimating wallclock requirements
for individual jobs.

b.  Project PIs do not have reliable estimates for project-wide allocation
requirements.

Example: CISM (5km Greenland Ice Sheet)

Even when comparing between just
two or three runs each for a sequence
of processor core counts, the
distributed solution of the linear
system at the core of the
Newton_Krylov solver for the ice
sheet velocities exhibits significant
performance variability for large
processor counts, affecting total model
performance. Just recently quantified
(data collected June 4-9, 2012) – will
now start identifying sources and
mitigation options.

Examples: CESM (T85f09: F1850r and BTRANS)

  43 jobs, each computing 400 simulation days.
Data collected between May 15 and May 22,
2012

  One exceeded 2 hour limit, sometime between
simulation days 325 and 400.

  Slowest successful job took 1 hour, 45 minutes;
fastest took 1 hour, 25 minutes.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35 40 45

R
un

tim
e

(s
ec

on
ds

)

Experiment Number

CESM Performance Variability (Total Time)

Cray XK6 (1 sixteen-core processor per node)
T85f09.F1850r for 400 simulation days

512 processor cores (128 processes, 4 OMP threads)
Components stacked

 Completed within 2 hour time limit
 Exceeded time limit (estimated completion time)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35 40

R
un

tim
e

(s
ec

on
ds

)

Experiment Number

CESM Performance Variability (Total Time)

Cray XK6 (1 sixteen-core processor per node)
T85f09.BTRANS for 280 simulation days

640 processor cores (ATM: 128 processes, 4 OMP threads)
ATM/OCN concurrent; ICE/LND concurrent (stacked with ATM)

 Completed within 2 hour time limit
 Exceeded time limit (estimated completion time)

 Five Member Ensemble Completion Time

  43 jobs, including 8 five-element ensembles
(each submitted as a single job), each computing
280 simulation days. Data collected between
May 23 and June 6, 2012

  Two jobs exceeded 2 hour limit, both between
simulation days 250 and 280.

  Slowest successful ensemble took 1 hour, 40
minutes; fastest took 1 hour, 26 minutes.

Example: CESM (T341f02.F1850r)

  21 jobs, each computing 150 simulation days.
Data collected between May 15 and June 8,
2012.

  Two exceeded 6 hour limit, one between
simulation days 140 and 145 days, and one
between 145 and 150.

  Based on benchmark runs, expected to be
able to complete 180 days in 6 hours.

  Note that both I/O and non-I/O demonstrated
performance variability

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

Ru
nt

im
e

(s
ec

on
ds

)

Experiment Number

CESM Performance Variability (Total Time)

Cray XK6 (1 sixteen-core processor per node)
T341f02.F1850r for 150 simulation days

4096 processor cores (512 processes, 8 OMP threads)
Components stacked

 Completed within 6 hour time limit
 Exceeded time limit (estimated completion time)

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

Ru
nt

im
e

(s
ec

on
ds

)

Experiment Number

CESM Performance Variability (Run Loop, No I/O)

Cray XK6 (1 sixteen-core processor per node)
T341f02.F1850r for 150 simulation days

4096 processor cores (512 processes, 8 OMP threads)
Components stacked

 Completed within 6 hour time limit
 Exceeded time limit (estimated completion time)

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

Ru
nt

im
e

(s
ec

on
ds

)

Experiment Number

CESM Performance Variability (Initialization and I/O in Runloop)

Cray XK6 (1 sixteen-core processor per node)
T341f02.F1850r for 150 simulation days

4096 processor cores (512 processes, 8 OMP threads)
Components stacked

 Completed within 6 hour time limit
 Exceeded time limit (estimated completion time)

Example: CESM (T341f02.F1850r)

  Comparing performance between two jobs that exceeded the 6 hour wallclock limit and the fastest
and slowest successful runs (completed in 4.5 and 5.75 hours, respectively) . The failed
experiments exhibit high internal performance variability. The successful runs have primarily
different “base” (or static) performance levels. This was just happenstance - neither of these are
necessary characteristics of “failed” or “successful” runs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140

Ru
nt

im
e

fo
r P

re
vi

ou
s

5
Si

m
ul

at
io

n
Da

ys
 (s

ec
on

ds
)

Simulation Day

CESM Performance Time Series (Run Loop)

Cray XK6 (1 sixteen-core processor per node)
T341f02.F1850r, Components Stacked

4096 processor cores (512 processes, 8 OMP threads)
 Failed Run (140 Simulation Days)
 Failed Run (145 Simulation Days)

 Slowest Successul Run (150 Simulation Days)
 Fastest Successul Run (150 Simulation Days)

Aside: Gemini Interconnect Asymmetries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

on
d

Amount of Data Sent Each Direction

two nodes, one (X.Y.Z) coordinate
one process per node, processes 0,1
 same coordinates
 same coordinates
four nodes, two (X,Y,Z) coordinates,
one process per node, processes 0,2
 X direction
 Y (fast) direction
 Y (slow) direction
 Z (fast) direction
 Z (slow) direction

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

on
d

Amount of Data Sent Each Direction

four nodes, two (X,Y,Z) coordinates,
1 process per node, processes 0-2, 1-3
 X direction
 Y (fast) direction
 Y (slow) direction
 Z (fast) direction
 Z (slow) direction

–  3D torus interconnect topology
–  Two compute nodes per (X,Y,Z) coordinate, connected via a single Gemini switch
–  Messages between nodes differing by one in either X, Y, or Z coordinates go through

two Gemini switches
–  For communication between nodes that are neighbors in the Y direction,

performance differs depending on whether the smaller Y-coordinate is even
(“faster”) or is odd (“slower”).

–  For communication between nodes that are neighbors in the Z direction, every eighth
link is “slower”.

Example: CESM (T341f02.F1850r)
  Process assignments for fastest successful job

–  All processes assigned to “complete” node pairs
–  4 X-coordinates: 21,22,23,24 (128 each)
–  2 Y-coordinates: 2, 3 (256 each, so no ‘slow’ Y links)
–  16 Z-coordinate: 8-23 (32 each)
So contiguous 4x2x16 allocation (no ‘holes’) with no “slow” Y links. Did
include 1 “slow” Z link.

Example: CESM (T341f02.F1850r)
  Process assignment for slowest successful job

–  272 processes assigned to 136 “incomplete” node pairs (53%)
–  processes from 9 other running jobs assigned to the “other” nodes in 130

of these node pairs, with 5 other nodes allocated but with no running jobs
yet, when the T341f02.F1850r jobs started. (Details on these jobs are
available, as well as changes during the execution of the T341f02.F1850r
job.)

–  8 X-coordinates: 17-24 (varying between 14 and 142 each)
–  10 Y-coordinates: 0-5, 8-9, 14-15 (varying between 16 and 92 each)
–  24 Z-coordinates: 0-23 (varying between 6 and 44 each)
So widely scattered nodes, with many holes in the vertex cover, and perhaps
including communication over a “slow” Y link.
Potential for interconnect contention from jobs running on other nodes in
incomplete node pairs, and from other jobs sharing other interconnect links,
based on noncompact node allocation (but nothing proven by these data).

Example: CESM (T85f09 BTRANS)

  Time spent in queue for an ‘enhanced priority’ project – still includes delays as long as 9 hours.
Same data plotted on left (linear-log) and on right (linear-linear). “Normal priority” job
submissions can stay in queue for multiple days.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 2 4 6 8 10 12

T
im

e
b

et
w

ee
n

 s
u

b
m

is
si

o
n

 a
n

d
 s

ta
rt

 (
se

co
n

d
s)

Experiment Number

CESM Performance Variability (Queue Time)

Cray XK6 (1 sixteen-core processor per node)
 T85f09.BTRANS ensemble (3200 total cores)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12
T

im
e

b
et

w
ee

n
 s

u
b

m
is

si
o

n
 a

n
d

 s
ta

rt
 (

se
co

n
d

s)

Experiment Number

CESM Performance Variability (Queue Time)

Cray XK6 (1 sixteen-core processor per node)
 T85f09.BTRANS ensemble (3200 total cores)

Performance Variability, Summary
1.  Performance variability has been observed for many years, and is likely to

continue to be an issue for CESM target platforms in the future.

2.  Large and frequent performance variability is costly.

3.  First steps are identification, quantification, and diagnosis

a.  Without this, cannot identify mitigation strategies, nor convince those who
might be able to address the issues directly that there is in fact a problem
worth addressing.

b.  Also need to capture full costs, including time spent compiling, time spent
in queue waiting to be scheduled, time postprocessing, in order to
understand the true impacts, and to understand what are the true
performance bottlenecks in the project workflow.

4.  Preliminary work on augmentation to existing performance data capture logic
that can be used to document and diagnose performance variability is
promising, but needs to be included in released CESM versions and used in
production runs

CESM Instrumentation Proposal
(General / New Defaults)

1.  Capture additional timing data in the model
–  already supported in model, but not on by default

2.  Capture runtime global statistics data and individual process data for
representative processes for each component (e.g. component root)
–  currently collect individual process data for all processes and not collecting

runtime global statistics
–  by using runtime global statistics, do not need data for all processes in order

to generate summarization
3.  Capture performance data periodically during the run

–  already supported in model, but not on by default
–  frequency currently based on number of days, steps, simulation date, etc., but

should be a function of elapsed wallclock time
4.  Job-specific timing directory name, so that preserved when job aborts (not

overwritten by next run)
–  add option to delete if not needed after timing summary generated

CESM Instrumentation Proposal
(System and Project Specific – Support for in Model)

1.  Add time job queued and scheduled to CaseStatus
2.  Capture system interconnect topology
3.  Capture what physical processors job is running on, for whole job and for each

component
4.  Capture what other jobs are running, and where, just before job starts, and right

after it ends
5.  Run background job to query what other jobs are running, to complement

periodic timing data capture
6.  Copy job performance data to project archive when complete
7.  Track performance variability, generating reports automatically to

–  identify anomalies
–  identify trends
–  calculate true critical path and costs for project as a whole

Next Steps
1.  Refine logic and introduce into currently instrumented and as yet

uninstrumented production jobs, including 0.1 degree ocean and running on
much larger process counts.

2.  Refine and further develop postprocessing tools.
3.  Improve performance data archiving (perhaps by introducing a database)
4.  Convince CSEG that something like this capability is worth including in a

release.
5.  Develop user-level scheduling procedures that can mitigate performance

variability:
a.  Run time evaluation and abort if potentially bad node allocation?
b.  Overallocation and use more efficient subset?

6.  Convince Centers to do use less aggressive scheduling algorithms, or let users
place restrictions on characteristics of allocations willing to accept?

