Nudging to reanalyses: a tool to evaluate model process realism (and later study predictability issues)

This talk: Brian Mapes, Patrick Kelly, Baohua Chen University of Miami

Huge thanks for can-do: Patrick Callaghan, Julio Bacmeister, Jerry Olson

Outline

• A flurry of conceptual orientation slides

 Some results from nudging {u,v,T} in CAM5-UWens-org-SE toward 3 reanalyses (MERRA, ERAI, JRA)

Conclusions and a plea for sensible CAM tendency outputs

Opportunities for (analyzed) observations

Beyond **comparing state variables** to model outputs

(e.g. AMWG SD sets)

I like

NASA '*tendency*' nomenclature

- The model is a PDE solver
- Time rate of change = Σ (tendencies)

Time rate of change of ψ =

= model_error

+ model

 $\psi = \{u, v, T, q_v, ...\}$

Time rate of change of ψ =

= model_error

- + $d\psi dt_dyn$
- + $d\psi dt_phy$

 $\psi = \{u, v, T, q_v, ...\}$

Time rate of change of ψ =

 $= d\psi dt_ana$ + dψdt_dyn + dψdt phy

 $\psi = \{u, v, T, q_v, ...\}$

Time rate of change of T =

= dTdt ana + dTdt dyn + dTdt rad + dTdt mst + dTdt trb + dTdt_gwd + dTdt_dis

Time rate of change of T =

- = dTdt_ana
 + dTdt dyn
 resemblance tests for
 interpretation of error =
 dψdt_ana. Try to
 reduce by adjusting
 ("improving!") physics.
- + (dTdt_swr + dTdt_lwr)
- + (dTdt_cnv + dTdt_lsc) +
- + $d\psi dt_trb$ + ...
 - etc... breaking down a sensible whole

NASA tendency-of- ψ datasets

- All tendencies evaluated at realistic state
- Time axis is real-world time, not model time
- Analyze your flow phenomenon!
 e.g. MJO composites (Mapes & Bacmeister 2012)
- *Closed* model budgets: a firm framework
 - 3D, plus vertically integrated (2D fields)
 - Variable names clear
 - model errors glimpsed through ddt_ana

Makes me want to look at model output!

- DTCOND = [DRYADJDT] + [ZMTOTDT] + [CMDTOTDT] + MACPDT/CPAIR + MPDT/CPAIR
- [ZMTOTDT] = ZMDT + EVAPTZM + ZMMTT + DPDLFT
- [CMDTOTDT] = CMFDT + SHDLFT
- [EVRNTZM] = EVAPTZM FZSNTZM EVSNTZM
- [DTCONV] = ZMDT + EVAPTZM + ZMMTT + CMFDT + DPDLFT + SHDLFT
- MACPDT =
- + L_v*CMELIQ + L_v*CLDLIQADJ + L_v*CLDLIQLIM (liquid <--> vapor)
 - + (L_v+L_i)*CLDICEADJ + (L_v+L_i)*CLDICELIM (ice --> vapor)
- MPDT =
- L_v*QCSEVAP + L_v*QCRESO (liquid <--> vapor)
- (L_v+L_i)*QISEVAP + (L_v+L_i)*QIRESO + (L_v+L_i)*CMEIOUT
- L_v*[EVAPRAIN] (rain --> vapor)
- (L_v+L_i)*EVAPSNOW (snow --> vapor)
- L_i*MPDW2I (liquid --> ice)
- + L_i*(PSACWSO + BERGSO) (liquid --> snow)
- + L_i*MNUCCRO (heterogeneous freezing of rain --> snow)
- + L_i*PRACSO (accretion of rain by snow)
- + MELTSDT (melting of snow to rain W/Kg)
- + FRZRDT (Homogeneous freezing of rain to snow W/Kg)
- [NONPHYSDT] = L_v*CLDLIQADJ + (L_v+L_i)*CLDICEADJ

+ (L_v+L_i)*CLDICELIM + L_v*QCRESO + (L_v+L_i)*QIRESO

- prevent nonphysical states by making arbitrary corrections,

CAM5: ...better triple check your code & final budgets, at the end of adding up this heap of historically named partial tendencies!

CAM Time rate of change of ψ Makes me *want* to look at model output...

...From NASA!

Nudging CAM5-SE

- CAM5 with HOMME (SE) DyCore
- Mapes-Neale (2 PB plumes w/ORG) convection
 ZM scheme disabled; plume2 is "deep" (low ε)
- 4-member ensemble run for JJA 2008
- CTL run compared to runs Nudged to Various Reanalyses (MERRA, JRA, ERAI)
 - U, V, and T nudging tendencies added

– nudging time scale = 6 hrs

JJA U 200mb

Mean Bias CTL

Mean Bias w/ Nudging

JJA U 200mb

Mean Bias CTL

Mean nudging DU/DT

JJA U 200mb

Mean Bias CTL

Mean model bias is a compounded, coupled complex of process errors and all the feedbacks they excite. Easy to see (e.g. AMWG Std Diags) but hard to interpret & know how to fix!

Mean nudging DU/DT

But these (model *process or tendency* errors) contain clearer clues how to go try and fix it!

V-wnd errors not as well constrained

Mean Bias CTL

(Unbalanced Coriolis force on u budget overpowers v nudging?

DeWeaver and Nigam 2000)

JJA Temp 850mb

Mean Bias CTL

deg K

the pattern of errors

360

Nudging DT/Dt

But Marginal improvement of T_{850mb} errors

Some stronger tendencies overpower nudging: (from surface? from imbalance like in v wind?)

Nudging {u,v,T} has profound effect on SLP

Nudging greatly improves large-scale divergent flow (χ_{200})

due to weak monsoon heating

p/uuu

←Control error in precipitation

All 3 Nudgings of {u,v,T} only reduce precip errors

All 3 similar

Conclusions

 Nudging-to-reanalysis escorts model processes through 'realistic' states

albeit pulled a bit off its attractor/manifold

- After the run, nudging tendencies are essentially a data set of model process (tendency) errors
 - on real time axis: easy to composite flow dependences
 - multi-reanals bracket uncertainties: < signal, hooray!</p>
- Comparing dψdt_ana to model tendencies a promising path to interpreting & reducing errors at their process source
- A plea for budget outputs as central CAM code!
 - additional sensibly-named hierarchy of tendencies
 - total & breakdowns not a heap of scheme-specific scraps!
 - nothing historical is lost. No threat, pure opportunity.

Special thanks

- NCAR/CISL for computing resources
- Julio Bacmeister
- Patrick Callaghan
- Jerry Olson