### Atmospheric Model Working Group (AMWG) Agenda

- **1:30 pm** Rich Neale (NCAR) -- Overview of AMWG activities
- **1:45 pm** Cecile Hannay (NCAR) Results from CAM-SE AMIP and coupled simulations
- 2:00 pm Sungsu Park (NCAR) Scale-Adaptive Physics Parameterization
- 2:15 pm Pete Bogenschutz (NCAR) A Unified Cloud/Convection Scheme for CAM: Concept and Preliminary results
- 2:30 pm Xiaohong Liu (PNNL) –Improved ice nucleation in mixed-phased cloud an impact on climate
- 2:45 pm Brian Mapes (U. Miami) Multi-analysis nudged CAM-SE runs to evaluate the realism of a convection scheme
- **3:00 pm** Yaga Richter (NCAR) Higher vertical resolution in CAM Do we need it?
- **3:15 pm** Kevin Raeder (NCAR) Data assimilation with CAM-SE and DART
- 3:30 pm *Break*
- 4:00 pm Bill Collins (Berkeley/LBNL) Nonhydrostatic high-order accurate adaptive mesh dynamics for CAM
- 4:15 pm David Romps (LBNL) The forgotten advection in CAM
- 4:30 pm Discussion (lead Minghua Zhang, Stony Brook)
- 5:00 pm Session Ends

## **CAM5 Development Activities**

#### Initial results from physics development

- Cloud physics
- Modal aerosol model
- Numerics sensitivity

#### Dynamical core and high resolution modeling

- Spectral element (SE) core
- 0.25° global simulations
- Regional refinement simulations
- Vertical resolution

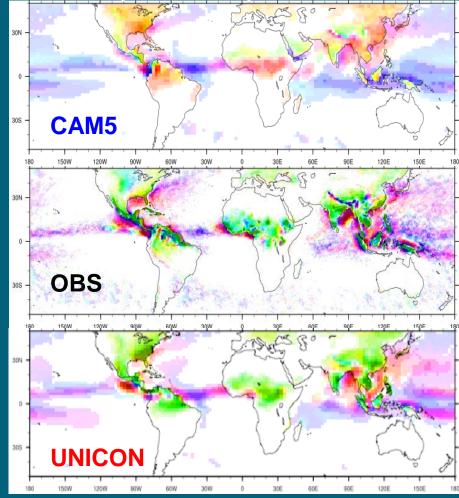
#### **Recently released versions**

Key biases

- Tropical precipitation
- Precipitation frequency
- Tropical cyclones
- Supported model versions
- Resolution, dynamical core, physics
   Planning towards CMIP6/AR6
- Timeline
- Current available physics development





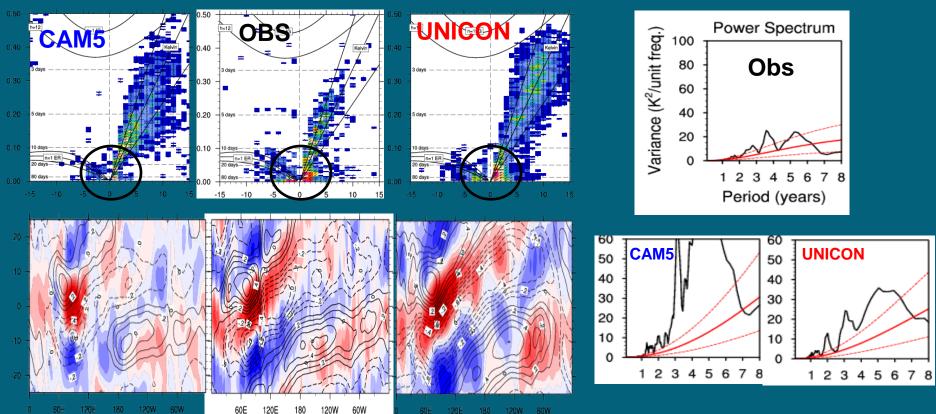



### UNICON Initial Results Sungsu Park, NCAR



- UNICON Unified Convection Scheme is designed to simulate all shallow-deep, dry-moist, and forced-free convection within a single framework in a seamless, consistent and unified way.
- Currently, good results with L30 1-deg resolution with an improved Taylor score (0.761 in UNICON, 0.784 in CAND), climatology
- Much improved variability (e.g., diurnal cycle of precipitation, MJO and ENSO.)
- Extensive test simulations at high horizontal and vertical resolutions will be started soon

#### **Diurnal Cycle of Precipitation**




Peak rainfall moves from midday to early evening (JJA)

### UNICON Initial Results Sungsu Park, NCAR

### **Madden-Julian Oscillation**

### **ENSO**



Improved MJO wave amplitude and propagation

Improved mean El Nino amplitude

## CLUBB Cloud Layers Unified by Binormals

#### Peter Bogenshutz, NCAR

✓ Third-order turbulence closure centered around an assumed double Gaussian PDF)

✓ CLUBB replaces shallow convection, PBL, and cloud macrophysics parameterizations in CAM5 with one equation set

✓ CAM-CLUBB is in CESM release as an option and is overall competitive with CAM5

✓ In the next version of CAM-CLUBB, the deep convection scheme will e replaced as well

#### ✓ (see Bogenschutz talk)

#### CAM5 minus CLOUDSAT

Low

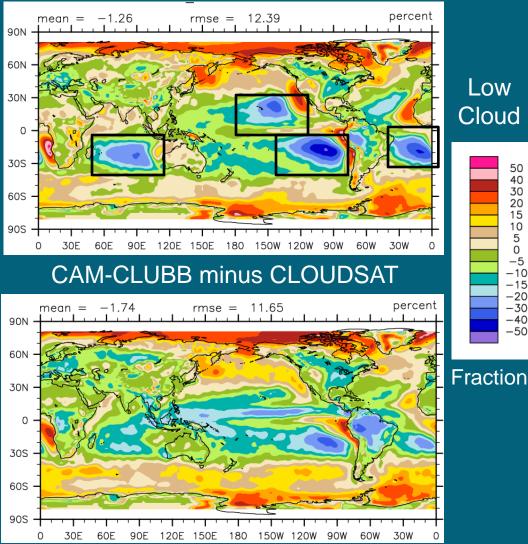
Cloud

50 40

30

20 15 10

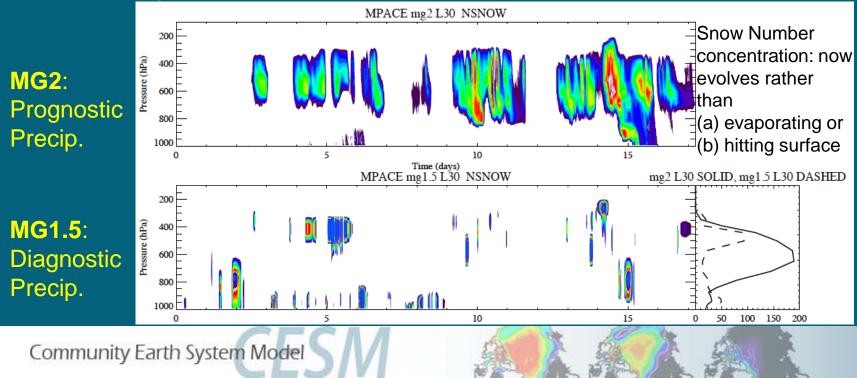
5


0 -5

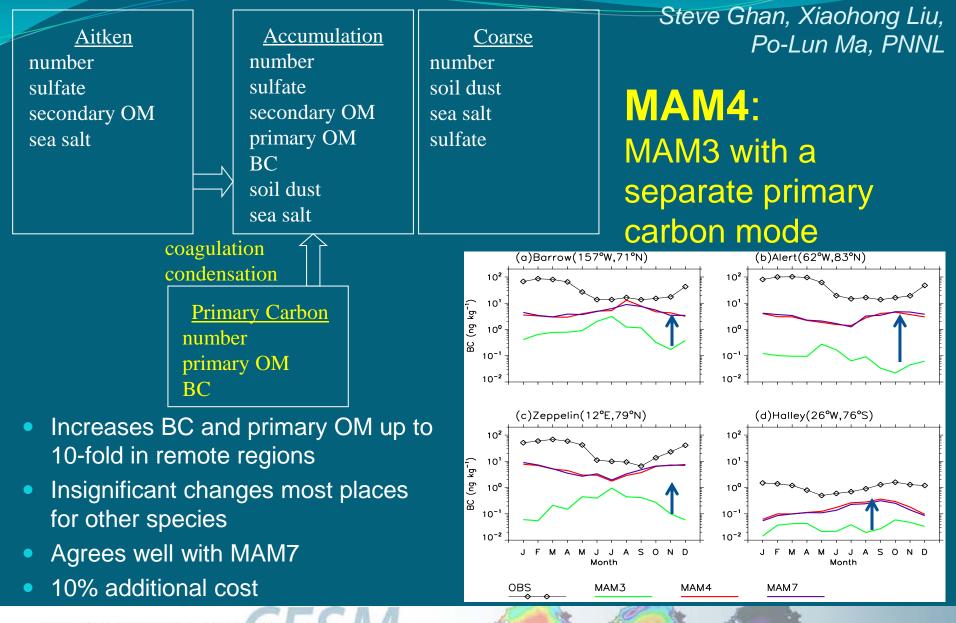
-10

-15 -20

-30-40


-50

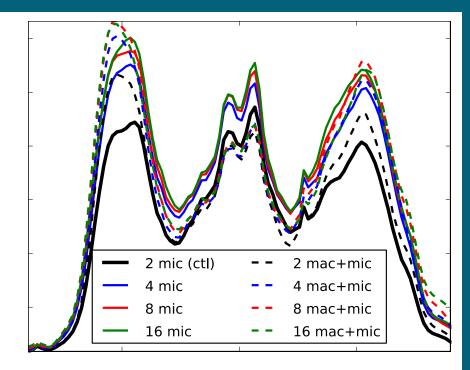



### **CAM Microphysics Developments**

Gettelman, Morrison, Santos, Caldwell, Liu, Chen, Su, NCAR

- Goal: Multi-Scale Clouds
- Refactored MG1.5 code on CAM trunk
  - Includes activation fix
  - Could make this default soon
- New code (MG2) with prognostic precipitation being tested: initial results promising (reduced AIE)




## Modal Aerosol Model (MAM)



## Numerics of Parameterizations

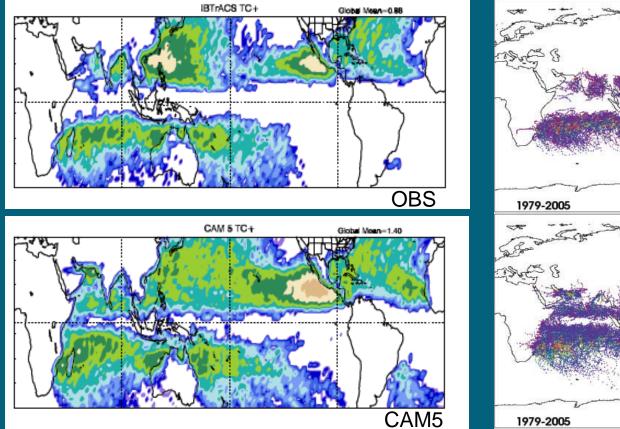
P. Rasch, H. Wan, P. Caldwell, B. Lebassi Habtezion

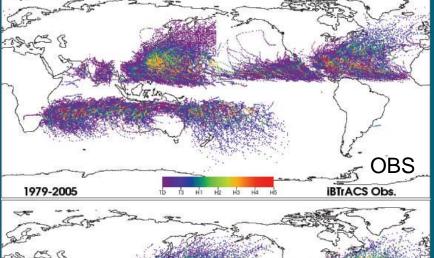




Climatological zonal-average liquid water path for simulations with various combinations of macro (mac) +microphysical (mic) substeps.

### <u>Goals:</u>


- Fix process coupling issues which have a big effect on CAM5 climate (fig on left)
- Ensure temporal convergence of CAM physics (a prerequisite for high-res skill)
   <u>Methods:</u>
- Explore impact of  $\Delta t$  changes
  - Pinpoint source of Δt sensitivity by substepping groups of processes
- Use idealized models to capture pathological problems


### Further CAM developments

Ongoing model developments and diagnoses (+ many more!)

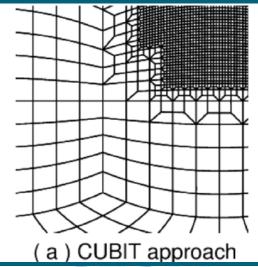
- Fix microphysics/activation liquid cloud fraction inconsistency + droplet mass/# inconsistencies – LLNL
- ✓ Implementing PDF-based macro/micro schemes LLNL/NCAR
- ✓ Further development of 7-mode MAM (MAM7) PNNL
- Unified scheme for aerosol vertical transport, activation, and removal in convective clouds PNNL/LLNL
- ✓ Advanced microphysics in convection UCSD/NCAR
- Applying new ice nucleation in mixed phase clouds PNNL/LLNL/DRI
- Deriving vertical velocity variance from TKE NCAR
- Implementing sub-columns for physics NCAR/SBU
- ✓ Atmospheric nudging to diagnose biases NCAR/LLNL/SBU
- ✓ CAPT experiments to diagnose biases NCAR/LLNL
- ✓ Model for prediction across scales (MPAS) NCAR/LANL
- ✓ Adaptive mesh refinement LBNL
- CAM-SE regional mesh refinement Sandia
- ✓ CSLAM tracer transport in flux form NCAR/Sandia
- Blocked flows and turbulent mountain stress NCAR
- Conserved energy changes required in physics NCAR

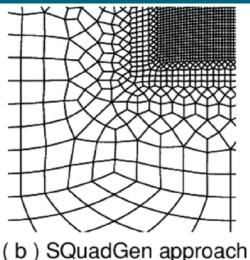
### High Horizontal Resolution Julio Bacmeister (NCAR), Michael Wehner (LBNL)





### 

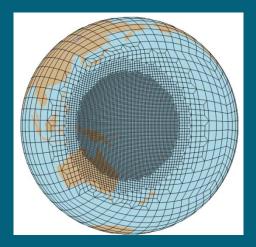

#### CAM5-SE (ne120, 0.25 deg)

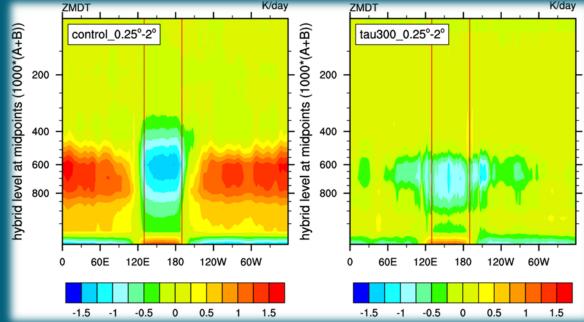

CAM5-FV (0.25 deg)

### CAM-SE variable resolution capability

Mark Taylor, O. Guba (Sandia) P. Ullrich (UC Davis)

- Tensor hyperviscosity
  - Improved CFL condition (faster code due to larger timestep)
  - Robust and scale aware: Single tuning for all grids
  - Reduced error and noise in grid transition regions
- New grid generation software <u>SQuadGen</u> replaces <u>CUBIT</u>
  - Low-connectivity mesh transition template: Less distorted elements and improved CFL condition
  - Better smoothing for spherical grids, which further improves CFL condition
  - Source code included with HOMME

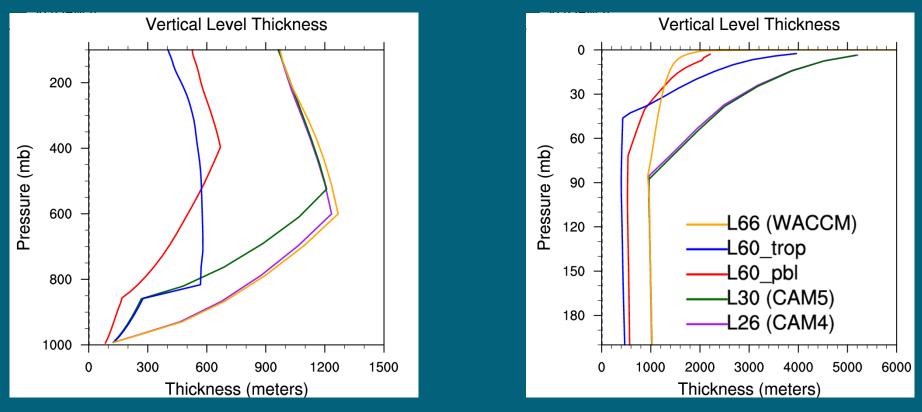



### **Regional refinement**

Substituting global high resolution for a targeted regional focus

Zhuxiao Li, Rich Neale, Mike Levy (NCAR) Mark Taylor (Sandia)






 ✓ Tropical regional refinement ne30->ne120 (2° to 0.25°)
 ✓ Aqua-planet CAM5 simulations ✓ Deep convective heating is sensitive to region of refinement (between red lines, LEFT)
✓ Changing deep convective timescale to 5 minutes reduces sensitivity (RIGHT)

## **Increased Vertical Resolution**

Initial simulations focused on dual strategy



L60\_pbl: Increased resolution through whole atmosphere (including PBL)

L60\_trop: Increased resolution above boundary layer only

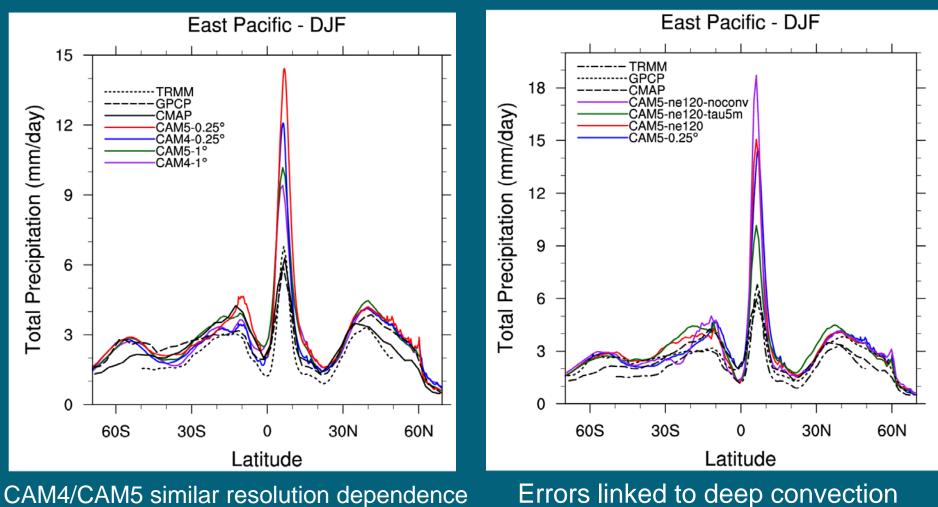
- Represents realistic biennial oscillation (coupled with WACCM GWD scheme)
- Significantly reduces cold pole problem
   Yaga Richter, Ari Soloman, Julio Bacmeister (NCAR)

## **Recent CAM5 Releases**

### CAM5.2 (November 2012, CESM1.1/1.1.1)

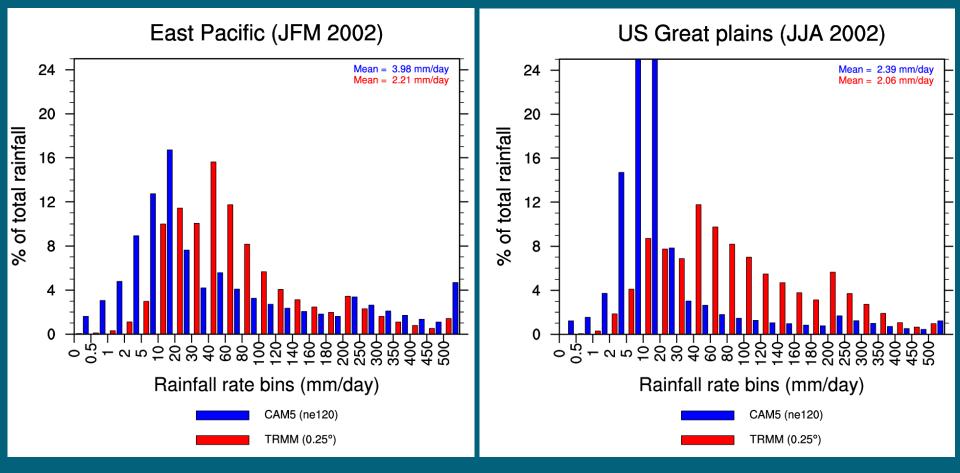
- CAM-SE available for users
- Topographic datasets included (consistent sub grid-scale components)
- Diagnostic radiation calculations using MAM
- CAM5.3 (last week, CESM1.2)
- CAM-SE
  - Eulerian -> Lagrangian vertical advection
  - Diffusion operator fix
  - Improved low-cloud simulation
  - AMIP and coupled simulations being validated (Cecile Hannay)
- Prescribed aerosols available
- Microphysics updates (MG1.5)
- CLUBB available
- Coupled simulations under way (Cecile Hannay)

# **Discussion Slides**


# Discussion

1. Addressing systematic errors; what are the priorities?

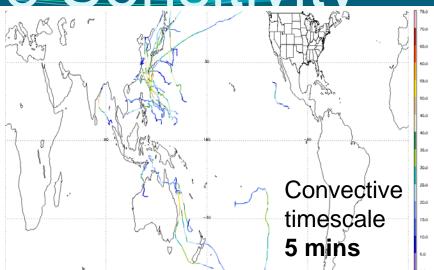
- Tropical precipitation, high cloud LWCF, mid-west rainfall, mixed phase clouds
- 2. How do we move towards a supported high-res model (horizontal and vertical)?
- 3. How do we maintain a university available model?
- 4. How can we better entrain non-NCAR developers?
- 5. Supported model versions
- 6. Path(s) forward on model development (esp. physics)
- 7. Timeline of model development for CMIP6
- 8. AMWG draft development documents (developments, metrics and protocols)
- What will be the 'new science opportunities' for CESM2 (~2016)
  - Regional climate modeling

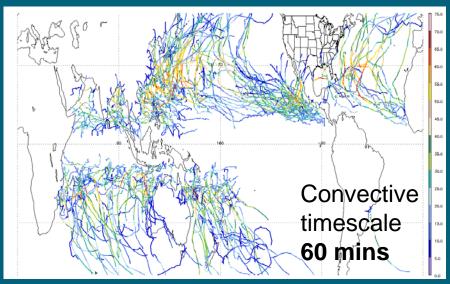

### **Tropical Biases**

#### Many biases worsen, e.g., ITCZ



## Rainfall frequency


Common bias for many regions: Too much light rainfall, not enough heavy

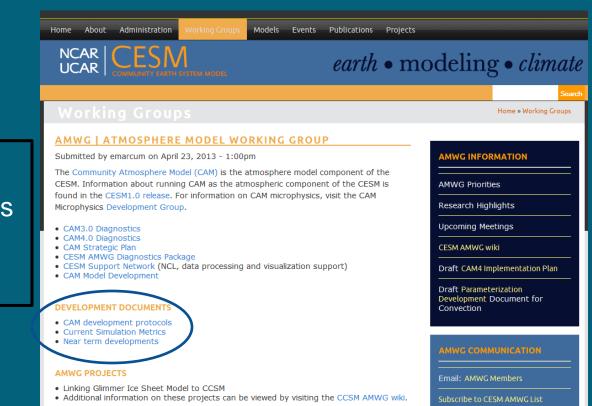



# Tropical Cyclone Sensitivity

Julio Bacmeister, John Truesdale (NCAR)

- CAM5 has realistic tropical cyclone climatology
- Sensitive to deep convection settings
- With 5 minute timescale reduced cyclone count
- Rapid response of deep convection shuts of cyclone development
- Emphasizes sensitivities in the high resolution model that need to understood






Cyclone track climatology colored by windspeed

## Feedback on AMWG documents

### **Draft documents**

- CAM development protocols
- Simulation metrics
- Near term developments



#### http://www2.cesm.ucar.edu/working-groups/amwg

## Supporting CAM configurations

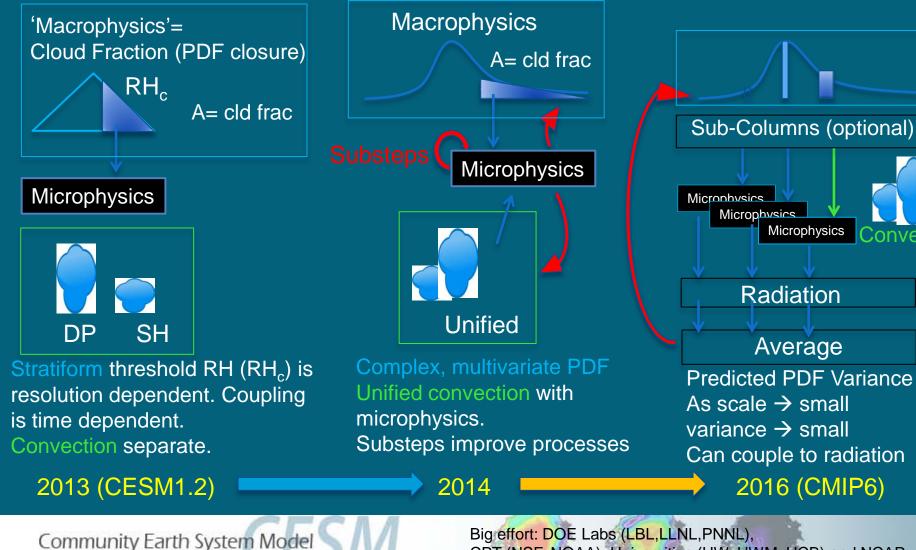
Varying resolution, dynamical core and physics packages

Supported CAM5-SE ne30 (1°) General climate applications CAM5-FV 2° Paleo, chemistry and biogeochemistry applications + university users

In Development CAM5-SE ne120 (0.25°) *High resolution simulations* CAM5-SE ne30\_r\_ne120 Regional climate applications Functional CAM5-FV 0.25° and 1° CAM4-FV 1° and 2° CAM5-SE ne16 (2°) CAM5-SE ne240 (0.125°) CAM4-EUL (T180,T360)

Other Applications CAM5-EUL T31 CESM Tutorial configuration CAM5-FV 4° WACCM university users

> Ocean Mostly x1 x3 (university users) x0.1 (experimental)


### Multi-scale cloud evolution in CAM

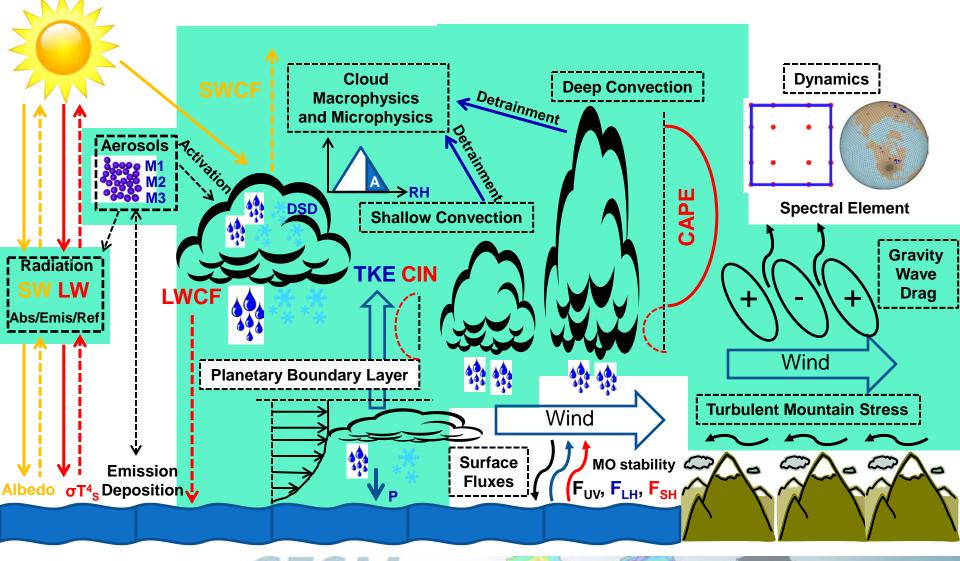
Address biases in tropics & precipitation (convection) and radiation (stratiform)

```
Scale Dependent
```

Minimal Scale Dependence

Microphysics




CPT (NSF, NOAA), Universities (UW, UWM, UCB) and NCAR

### CAM Development Timelines The path towards CMIP6

|                              | Replace GWD                                                                     | ng alternative cloud phy<br>(UNICON,CLUBB)       | ysics                                           | Physics decisions for CAM6                                                      |                                       | CAM6 model in<br>CESM2 for CMIP6 |
|------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|----------------------------------|
|                              | with WACCM<br>scheme                                                            | MG2 implementation                               | RRTM radiation<br>update<br>MAM7 implementation |                                                                                 | Control simulations with CAM6 physics |                                  |
|                              | MAM4<br>implementation                                                          | Test TMS and<br>replace scheme<br>with EC scheme |                                                 |                                                                                 |                                       |                                  |
| High Res.                    | CAM5 0.25 deg tuning<br>Vertical resolution testing (L60)?<br>With CAM5 physics |                                                  | Decision for<br>vertical resolution<br>increase | CAM5 0.25 deg tuning<br>Vertical resolution testing<br>With new physics options |                                       | 0.25 deg<br>CAM6 model           |
| Low Res.                     | Prescribed MAM implementation                                                   | Prescribed MAM<br>testing                        |                                                 | Physics de                                                                      | cisions                               | CAM6 low                         |
|                              | Consistent sub-<br>grid orography                                               |                                                  | Efficiency<br>provements for<br>2deg CAM5       | for low-res                                                                     | CAM6                                  | resolution model                 |
|                              |                                                                                 |                                                  |                                                 |                                                                                 |                                       |                                  |
| 20                           | 13 (CESM1.:                                                                     | 2) 2014 (                                        | CESM1.3)                                        | 2015 (CES                                                                       | SM1.4) 20                             | 016 (CESM2)                      |
| Community Earth System Model |                                                                                 |                                                  |                                                 |                                                                                 |                                       |                                  |

## **Community Atmosphere Model**

Representing the key atmospheric processes in CAM5

