

Global evaluation of CMIP5 Earth System Models in simulating Leaf Area Index using remote sensing products

Jiafu Mao^{1,*}, Forrest M. Hoffman², Jitendra Kumar¹, Xiaoying Shi¹, Shishi Liu¹, Daniel M. Ricciuto¹, Peter E. Thornton¹, Hua Yuan³, Yongjiu Dai³, Ranga B. Myneni⁴ and Zaichun Zhu⁴,

¹Climate Change Science Institute/Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

²Climate Change Science Institute/Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

³School of Geography, Beijing Normal University, Beijing 100875, China

⁴Department of Earth and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA

*E-Mail: <u>maoj@ornl.gov</u>; Tel.: +1-865-576-7815; Fax: +1-865-574-9501.

Modeling uncertainties

- Initial conditions
- Internal processes
- Parameters
- Natural and human external forcings

Global simulations and evaluations (LSM for example)

- Test the model beyond the single-site calibration
- Performance of the model against large-scale "observations", in particular the well-calibrated remote sensing data sets in recent decades
- Inform the model improvement and new measurements for next steps
- Improve understanding of ecosystem structure, function and climate-carbon cycle feedbacks at relevant spatial-temporal scales

LAI related work at ORNL

- Attribution studies of annual LAI change: Community Land Model (CLM) in CESM, Changing CO₂, Anthropogenic airborne nitrogen deposition and Dynamic LULCC (1982-2010) (Mao et al., 2013)
- Accessing the accuracy of prognostic LAI in fully-coupled Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5)

Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009

Contact: Jiafu Mao, 865-576-7815, maoj@ornl.gov

Funding: DOE Office of Science, Biological and Environmental Research

Citation: Mao J, Shi X, Thornton PE, Hoffman FM, Zhu Z, Myneni RB. Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009. Remote Sensing. 2013; 5(3): 1484-1497.

Objective

Application of CLM4 and a latest satellite-derived LAI to investigate annual trend changes and controlling factors of global vegetation growth from the period 1982 to 2009.

New Science

- Over the 28-year period, both the remote-sensing estimate and CLM4 simulation show a significant increasing trend in annual vegetation growth.
- Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere and larger increases at high latitudes in the Northern Hemisphere.
- The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend.
- Heterogeneous precipitation decreased this latitudinal LAI gradient, and considerably regulated the local LAI change.
- CO₂ fertilization during the last three decades was estimated to be the dominant cause for enhancement in global mean vegetation growth.
- Human induced land use/land cover change and nitrogen deposition produced slightly increasing global LAI and the regionally dependent impacts.

Significance

- Model-data analysis provides process attribution information not available from the observations alone.
- Simulated CLM4 LAI compares well with an independent satellite-based estimate in terms of annual trends and correlations with climate.
- These validation exercises provide new global-scale metrics for evaluation of model outputs and help prioritize improvements in model performance across different scales.

Modeling uncertainties

- Initial conditions
- Internal processes
- Parameters
- Natural and human external forcings

Global simulations and evaluations (LSM for example)

- Test the model beyond the single-site calibration
- Performance of the model against large-scale "observations", in particular the well-calibrated remote sensing data sets in recent decades
- Inform the model improvement and new measurements for next steps
- Improve understanding of ecosystem structure, function and climate-carbon cycle feedbacks at relevant spatial-temporal scales

LAI related work at ORNL

- Attribution studies of annual LAI change: Community Land Model (CLM) in CESM, Changing CO₂, Anthropogenic airborne nitrogen deposition and Dynamic LULCC (1982-2010)
- Accessing the accuracy of prognostic LAI in fully-coupled Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5)

CMIP5 models

- 24 fully-coupled ESMs
- Using multi-realization mean for each model group
- Diagnostic CO_2 and prognostic LAI for the period of overlap (2000 and 2009)
- RCP8.5 for year 2006 to 2009

Global remote sensing LAI products

- MODIS Collection 5 LAI data
- GIMMS LAI3g (based on the MODIS LAI, AVHRR GIMMS NDVI3g and Artificial Neural Network model) (Zhu et al., 2013)
- BNU LAI (improved MODIS LAI) (Yuan et al., 2011)

Methods

- Gap-filling of satellite LAI
- Remapping to global half-degree
- Global, each hemisphere and six latitudinal bands
- Seasonal cycle, mean, and trend et al.

		Component Models and Resolutions			
Model	Modeling Center (or Group)	Atmosphere	Land	Ocean	Sea Ice
BCC-CSM1.1	Beijing Climate Center, China	AGCM2.1	AVIM1.0	MOM4_L40	SIS
(Wu et al., submitted)	Meteorological Administration CHINA	$(2.875^{\circ} \times 2.875^{\circ}, L26)$	$(2.875^{\circ} \times 2.875^{\circ})$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ}, L40)$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ})$
BCC-CSM1.1(m)	Beijing Climate Center, China	AGCM2.1	AVIM1.0	MOM4_L40	SIS
(Wu et al., submitted)	Meteorological Administration, CHINA	$(2.875^{\circ} \times 2.875^{\circ}, L26)$	$(2.875^{\circ} \times 2.875^{\circ})$	$(1^{\circ} imes (1 - \frac{1}{3})^{\circ}$, L40)	$(1^{\circ} imes(1-rac{1}{3})^{\circ})$
BNU-ESM [†] (Dai et al., 2003, 2004)	Beijing Normal University, CHINA	CAM3.5 (2.875 $^{\circ}$ $ imes$ 2.875 $^{\circ}$, L26)	CoLM3 & BNUDGVM (C/N) (2 875° × 2 875° I 10)	MOM4p1 & IBGC $(1^{\circ} \times (1-\frac{1}{3})^{\circ}, L50)$	$\begin{array}{c} CICE4.1 \\ (1^\circ \ \times \ (1 \text{-} \frac{1}{3})^\circ) \end{array}$
CanESM2 [‡]	Canadian Centre for Climate	CanAM4	CLASS2.7 & CTEM1	CanOM4 & CMOC1.2	CanSIM1
(Arora et al., 2011)	Modelling and Analysis, CANADA	(2.81 $^\circ~ imes~2.81^\circ$, L35)	$(2.81^\circ~ imes~2.81^\circ)$	$(1.5^\circ~ imes~1^\circ$, L40)	$(2.81^\circ~ imes~2.81^\circ)$
CESM1-BGC	Community Earth System	CAM4	CLM4	POP2 & NPZD	CICE4
(Hurrell et al., in press)	Model Contributors, NSF-DOE-NCAR, USA	$(0.9^\circ~ imes~1.25^\circ$, L30)	$(0.9^{\circ} \times 1.25^{\circ})$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ}, L60)$	$(1^\circ \times (1-\frac{1}{3})^\circ)$
FGOALS-s2 ^a	LASG, Institute of	SAMIL2.4.7	CLM3 & VEGAS2.0	LICOM2.0	CSIM5
(Bao et al., in press)	Atmospheric Physics, CAS, CHINA	$(1.67^{\circ} \times 2.81^{\circ}, L26)$	$(1.67^{\circ} \times 2.81^{\circ})$	$(1^{\circ} \times (1 - \frac{1}{2})^{\circ}, L30)$	$(1^\circ \times (1-\frac{1}{2})^\circ)$
GFDL-ESM2g,	NOAA Geophysical Fluid	AM2	LM3	MOM4	SIS
GFDL-ESM2m ^b	Dynamics Laboratory, USA	$(2^{\circ} \times 2.5^{\circ}, L24)$	$(2^{\circ} \times 2.5^{\circ})$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ}, L50)$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ})$
(Dunne et al., 2012, 2013) HadGEM2-ES ^c (Collins et al., 2011;	Met Office Hadley Centre, UNITED KINGDOM	HadGAM2 & UKCA $(1.25^{\circ} \times 1.875^{\circ}, L38)$	${ m MOSES2}\ \&\ { m TRIFFID}\ (1.25^\circ\ imes\ 1.875^\circ)$	HadGOM2 & diat-HadOCC	$\begin{array}{c} HadGOM2 \\ (1^{\circ}\times(1\text{-}\frac{1}{3})^{\circ}) \end{array}$
Jones et al., 2011)				$(1^{\circ} \times (1 - \frac{1}{3})^{\circ}, L40)$	
INM-CM4++	Institute for Numerical	$(2^{\circ} \times 1.5^{\circ}, L21)$	$(2^{\circ} \times 1.5^{\circ})$	$(1^\circ \times 0.5^\circ, L40)$	$(1^{\circ} \times 0.5^{\circ})$
(Volodin et al., 2010)					
IPSL-CM5A-LR ²	FRANCE	$LMDZ4 (3.75^{\circ} \times 1.9^{\circ}, 1.30)$	$(3.75^{\circ} \times 1.9^{\circ})$	$(2^{\circ} \times (2^{-\frac{1}{2}})^{\circ} = 131)$	$(2^{\circ} \times (2 - \frac{1}{2})^{\circ})$
(Durresne et al., 2013) MIROC-FSM	IAMSTEC University of	MIROC-AGCM &	MATSIRO &	$(2 \times (2 \times 2), 201)$	$(2^{\circ} \land (2^{\circ} 2)^{\circ})$
(Watanabe et al	Tokyo, and NIES, JAPAN	SPRINTARS	SEIB-DGVM	$(1.5^{\circ} \times 1^{\circ}, L44)$	
2011; Oschlies, 2001)	5	$(2.875^{\circ} \times 2.875^{\circ}, L80)$	$(2.875^{\circ} \times 2.875^{\circ}, L6)$		
MPI-ESM-LR ^e	Max Planck Institute for	ECHAM6	JSBACH	MPIOM & HAMOCC	MPIOM
(Maier-Reimer et al., 2005)	Meteorology, GERMANY	$(2.81^{\circ} \times 2.81^{\circ}, L47)$	$(2.81^{\circ} \times 2.81^{\circ})$	$(1.5^{\circ} \ \times \ 1.5^{\circ}$, L40)	$(1.5^\circ~ imes~1.5^\circ)$
MRI-ESM1	Meteorological Research	GSMUV	HAL & MRI-LCCM2	MRI.COM3	MRI.COM3
(Yukimoto et al., 2011)	Institute, JAPAN	$(0.75^\circ~ imes~0.75^\circ$, L48)	$(0.75^\circ~ imes~0.75^\circ)$	$(1^{\circ}~ imes~0.5^{\circ}$, L51)	$(1^\circ~ imes~0.5^\circ)$
NorESM1-ME	Norwegian Climate Centre,	CAM-Oslo	CLM4	BOM & HAMOCC	CICE4
(Bentsen et al., 2012)	NORWAY	$(1.9^{\circ} \times 2.5^{\circ}, L26)$	$(1.9^{\circ} \times 2.5^{\circ})$	$(1^{\circ} \times (1 - \frac{1}{3})^{\circ}, L53)$	$(1 \overset{\circ}{} \times (1 - \frac{1}{3}) \overset{\circ}{})$

Climate zones used for summary

6

1 Arctic4 Northern Equatorial2 Boreal5 Southern Equatorial3 Northern Temperate6 Southern Temperate

nual mean LAI between 2000 a

Mean LAI range between 2000 and 2009

Maximum LAI and peak month

A observed ensemble mean B BCC-CSM1.1-M C BCC-CSM1.1 D BNU-ESM E CCSM4 F CESM1-BGC G CESM1-CAM5 H CESM1-WACCM I CanESM2 J GFDL-CM3 K GFDL-ESM2G L GFDL-ESM2M M HadGEM2-CC N HadGEM2-ES O INM-CM4 P IPSL-CM5A-LR Q IPSL-CM5A-MR **R IPSL-CM5B-LR** S MIROC-ESM-CHEM T MIROC-ESM U MIROC5 **V MPI-ESM-LR** W MPI-ESM-MR X NorESM1-ME **Y NorESM1-M** Z model ensemble mean

Taylor plot of LAI annual cycle for each model

- Higher LAI absolute value, lower seasonality and longer growing season were generally identified
- Tropical and high latitudes have big uncertainties
- Extension of many existing CMIP5 evaluations with satellite products, and better understanding of the consistencies and discrepancies among different models
- New global-scale metrics for evaluation of model outputs and help prioritize improvements in model performance across different scales
- Annual trends, environmental correlations and implications for carbon and hydrology cycles

Thank you for attention! Questions and comments?