Shifting nitrogen pathways in response to changing agricultural practices

Stuart Riddick

Biological and Environmental Engineering Department Cornell University

Aim – Create a Oth order model to quantify the size of N_r pathways

Rationale - Environmentally important when trying to understand the current impact of fertilizer and manure

Major Assumptions

- Animals graze on short semi-natural grassland
- All artificial fertilizer is urea fertilizer
- Nitrogen is uniformly spread over the grid cell
- Fertilizer is applied once in spring
- Does not account of agricultural practices

MODEL OUTPUT

Validating NH₃ emissions from manure at the local scale

Validating NH₃ emissions from fertilizer at the local scale

Global Nitrogen Pathways

Data Source	Source	N Input	NH ₃	Dissolved N	SOM	Remains
		(Tg)	(Tg)	(Tg)	(Tg)	in N pools
						(Tg)
Semi-Empirical	Manure	138	22	56	29	31
Galloway (2004)	Manure		24			
EDGAR	Manure		16			
Semi-Empirical	Fertilizer	86	8	51	26	0
Galloway (2004)	Fertilizer		10			
EDGAR	Fertilizer		20			

Hind-casting nitrogen pathways 1850 - present

Partitioning of nitrogen pathways 1850 - present

Manure

Fertilizer

Global variation in annual P_v of NH₃ from manure calculated by the CESM

Conclusions

- N pathways from fertilizer & manure have increased from pre-industrial
- From manure in 2000:
 - 21.7 Tg N year⁻¹ NH₃ emission
 - − 56.4 Tg N year⁻¹ run-off
- From fertilizer in 2000:
 - 8.4 Tg N year⁻¹ NH₃ emission
 - 51.1 Tg N year⁻¹ run-off
- Range of deposited manure N that volatilizes as NH₃ is:
 - Maximum 49.8 % (Iran)
 - Minimum 0.16 % (Venezuela)
 - Average 15.7 %
- Fertilizer N partitioning of is dependent on at amount of nitrogen applied to the surface.