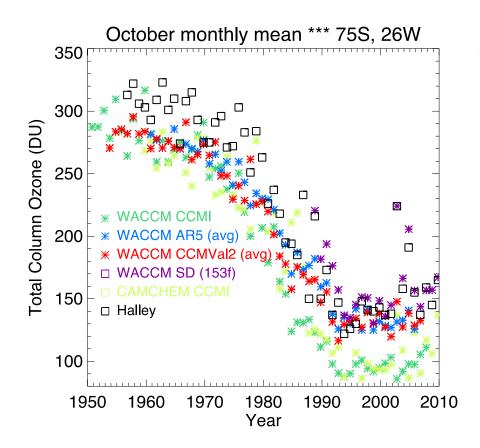


Chemistry-Climate Working Group Meeting June 2013

Jean-François Lamarque Steve Ghan (PNNL) Peter Hess (Cornell)

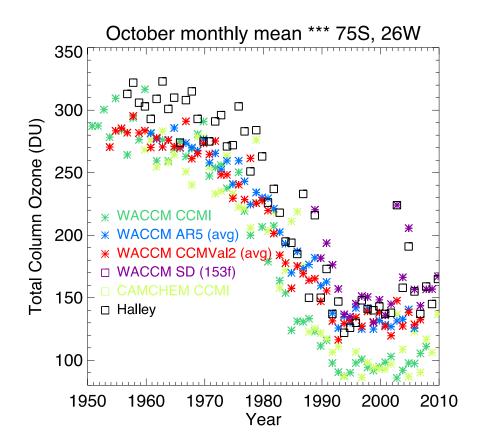
Recent/on-going news & activities

- CESM1.2 release (more discussion by S. Tilmes)
- Outcome of February meeting
 - Bug fix on tropospheric aerosol surface area from MAM
 - Participation in organic aerosol AeroCOM intercomparison (led by K. Tsigaridis)
- Several outside papers with CAM-chem (make sure you let us know of your publications)
- Extensive MAM development and aerosol branch (more discussion by S. Ghan)
- Updated prescribed volcanic aerosols and optics (better representation of Pinatubo impact; presented in Marika's talk)
- CCMI development

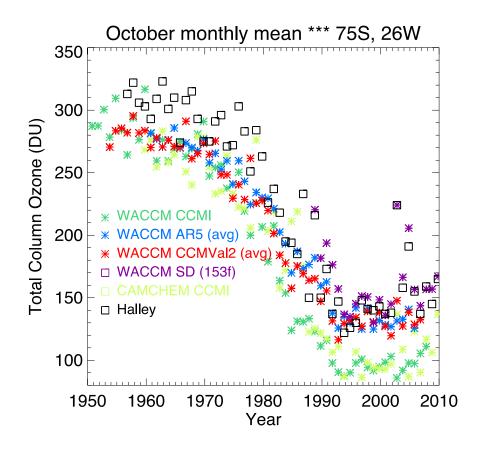


CCMI

- 3 main simulations (3 member ensemble)
 - REF-C1: 1960-2010 (hindcast)
 - REF-C1SD: 1980-2010 (hindcast with specified dynamics)
 - REF-C2: 1960-2100 (RCP6.0)
- WACCM and CAM-chem simulations (trop/strat/BAM with updated SOA)
- Many additional diagnostics and tracers (tropospheric transport)

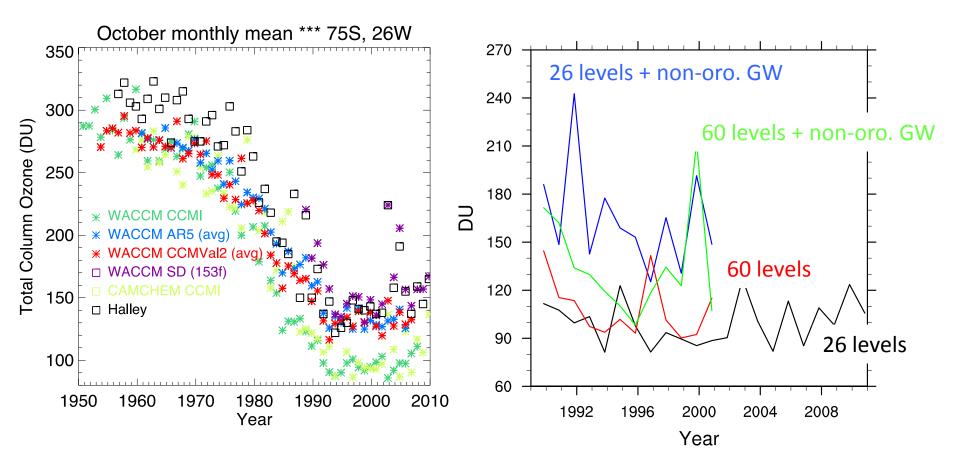


Good news: total ozone column matches the WACCM results



Good news: total ozone column matches the WACCM results

Bad news: total ozone column is much too low, because of too cold stratosphere and improved representation of ozone loss processes (looks great in WACCM SD run)


Good news: total ozone column matches the WACCM results

Bad news: total ozone column is much too low, because of too cold stratosphere and improved representation of ozone loss processes (looks great in WACCM SD run)

Approach: test with 60 levels and addition of non orographic gravity wave drag (on-going)

Items for discussion this morning

- Main science topics and biases
- Protocol (draft document sent last Friday) for model improvement and inclusion in trunk (includes metrics)
- Model development priorities
- CMIP6

Rough Timeline for CESM2 Development

- Release target of May, 2016
- Component model targets for CESM2:
 - CAM6; POP-updated? Or MPAS-O; CLM5?; CICE5 (or MPAS-I?); Chemistry?; BGC?; WACCM?
- Timings for development
 - May, 2013 CAM-SE; CLM4.5; Ocn BGC mods
 - May, 2014 CAM-SE; CLM4.5; BGC mods; CISM2; POP-updated?; CICE5? WACCM-SE?
 - May 2015 -
 - May 2016 CESM2 Release

ChemClimWG Development Plan (from Feb meeting 2013 + updates)

- Update to MEGANv2.1/include maps when possible (in cesm1.2)
- Improvements/bug fixes to the dry deposition (Thanks to Maria Val Martin and Steve Arnold!)
- Coupling chemistry with MAM and CAM5 physics (in cesm1.2)
- Prescribed aerosol option (in cesm1.3)
- Diagnostic radiation for any MAM species (in cesm1.3)
- MAM4: primary hydrophobic carbon mode added to MAM3
- Dust speciation, optics, and ice nucleation (Cornell, PNNL)
- Improved aerosol scavenging (H. Wang talk later)
- Superfast in CAM5 (LLNL)
- Implementation of FAST-J photolysis rate computation (DOE funding: M. Prather/P. Cameron-Smith)
- SE/FV dynamical core comparison: on-going tracer tests based on SD configuration
- Specified dynamics in FV and SE (pressure fixer)
- kPP mechanism + master list of chemical reactions
- Box Model or SCAM w/ chemistry
- Fire emissions: of what? (number?) (NCAR., Cornell, PNNL)

ChemClimWG Development Plan (from Feb meeting 2013 + updates)

• Medium Priority

- Update SOA mechanism, including VBS (MIT, NCAR, PNNL, LLNL, UM, PSU, NCSU) intercomparison
- More general aerosol thermodynamics (PNNL, NCSU)
- Ammonium & nitrate (NCAR)
- Speciation of POM: hygroscopicity (PNNL)
- Ion-induced nucleation (SUNY-Albany, PNNL,NCSU)
- Marine organic sources (NCSU, Harvard, LANL, Scripps, PNNL)
- Coupled DMS emissions (LANL, ORNL, LLNL, PNNL)
- Coupling MAM to SNICAR (Flanner & PNNL)
- MAM volcanic aerosol (NCAR, PNNL)
- Geoengineering stratosphere, CCN (NCAR, PNNL)
- Frost flower sources (Scripps, LANL)
- Conversion of preprocessor to KPP?
- Vertical resolution
- WACCM lite? (try to get this going before Breckenridge?)
- Low Priority
 - "Coarse resolution" FV
- Diagnostics
 - Tools for model result differencing
 - Aerosol diagnostic package (PNNL)
 - Benchmark numbers methyl chloroform lifetime, ozone budget terms, methane lifetime, mass-weighted tropospheric OH lightning NOx, sf(co/nox/isoprene))

First Announcement for a SPARC Workshop Stratospheric Sulfur and Its Role in Climate (SSiRC)

28 - 30 October 2013 Atlanta, Georgia, USA

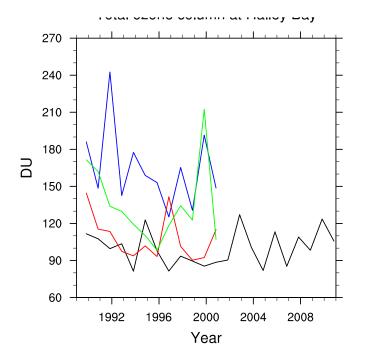
Aerosol and, therefore, sulfur play a key role in the climate system. In recognition of their importance, the WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) SSiRC activity is sponsoring a scienti¢c workshop to facilitate an improved understanding on the way that the stratospheric aerosol layer will be a¢cted by on-going climate change and how the stratospheric aerosol layer itself drives climate change.

Additional information on the workshop can be found at:

http://www.sparc-climate.org/activities/stratospheric-sulfur/

CSL Allocation

	Experiment	Configuration	#runs		hour/yr	total	Requested		
5.4	Chamister in CAM OF		40	per run	1.000	core-hr	50		
D.1	Chemistry in CAM-SE	F_1degree_CAM5_STRATTROP	40	2	1600	128000	50		
		F_0.5degree_CAM5_STRATTROP	20	2	6400	256000	25		
		F_0.25degree_CAM5_STRATTROP	10	2	20000	400000	10		
		F_1degree_CAM5_STRATTROP_SE	40	2	1800	144000	50		
		F_0.5degree_CAM5_STRATTROP_SE	20	2	7200	288000	25		
		F_0.25degree_CAM5_STRATTROP_SE		2	28800	576000	10		
D.2	Chemistry schemes	F_2degree_CAM5_TROP	40	10	415	166000	50		
D.3	Vertical resolution(100 levels)	F_1degree_CAM5_STRATTROP	10	5	6500	325000			
D.4	Land use/SOA	B_2degree_CAM5_TROP	10	4	500	20000			
		B_1degree_CAM5_TROP	10	1	1660	16600			
D.5	MAM aerosols	multiple resolutions				433000			
D.6	Aviation impact	multiple resolutions				80000			
D.7	Kinetic energy backscatter	F_1degree_CAM5_STRATTROP	1	50	1660	249000			
Total						2832600	3058100		
P.1	1850 Control	B_1degree_CAM5_STRATTROP	1	250	2000	500000	300		
	4xco2 ctrl	B 1degree CAM5 STRATTROP	1	250	2000	500000	300		
	4xco2 ctrl w/ 2100 emissions	B_1degree_CAM5_STRATTROP	1	250	2000	500000	300		
	2000 climate/2000 emissions	B 1degree CAM5 STRATTROP	1	200	2000	400000	300		
		B 1degree CAM5 STRATTROP	1	100	2000	200000			
	1850-1950	B 1degree CAM5 STRATTROP	1	100	2000	200000			
P.2	Response to regional forcing	B_2degree_CAM5_TROP	15	100	500	750000	20		
P.3	LGM-CH4	F 1degree CAM5 STRATTROP	8	30	1660	398400	10		
P.4	Hindcast	F 0.5degree CAM5 STRATTROP	3	5	20000	300000			
		F 1degree CAM5 STRATTROP	10	20	1660	332000			
		F 1degree CAM5 STRATTROP SD	5	30	3320	498000			
P.6	GeoMIP	B 1degree CAM4 STRATTROP	1	320	1400	448000			
		B 1degree CAM4 BGC	1	500	480	240000			
P.7	Land use/SOA	B 2degree CAM5 TROP	28	10	500	140000			
1.7		B 1degree CAM5 TROP	6	10	1660	99600			
P.8	MAM aerosols	multiple resolutions				289000			
P.9	Data assimilation	F 2degree CAM5 TROP	160	1	400	64000			
P.10	Aviation impact	multiple resolutions	200	-		250000			
Total	· · · · · · · · · · · · · · · · · · ·					6109000	6958600		
. ocar									


ChemClimWG Development Plan (from Feb meeting 2013)

• Top Priority

- Update to MEGAN/include maps when possible (in the release version)
- Improvements to the dry deposition (Thanks to Maria Val Martin!)
- Coupling chemistry with MAM and CAM5 physics (in the release version)
- Superfast in CAM5 (LLNL)
- SE/FV dynamical core comparison: on-going tracer tests based on SD configuration
- kPP mechanism + master list of chemical reactions
- Box Model or SCAM w/ chemistry
- Implementation of FAST-J photolysis rate computation (DOE funding: M. Prather/P. Cameron-Smith)
- Fire emissions: of what? (number?)
- Specified dynamics in FV and SE (pressure fixer)
- Medium Priority
 - Update SOA mechanism: Colette Heald's SOA in the release version (additional work by K. Barsanti); link with MAM
 - VBS modeling of SOA (separate from MOZART)
 - Conversion of preprocessor to KPP?
 - Vertical resolution
 - WACCM lite? (try to get this going before Breckenridge?)
- Low Priority
 - "Coarse resolution" FV
- Diagnostics:
 - Tools for model result differencing
 - Benchmark numbers: methyl chloroform lifetime ozone budget terms, methane lifetime, mass-weighted tropospheric OH, lightning NOx, sf(co/nox/isoprene)

