Coupling of an advanced particle microphysics (APM) model with CAM5

Fangqun Yu and Gan Luo

Atmospheric Sciences Research Center State University of New York at Albany

CESM workshop, June 19, 2013

Studies of aerosol first IRF (in W m⁻²) published after IPCC (2007)

Study	Model type ^a	Chemistry	Aeroso	ls ^b	Firs	t IRF
			size	Species	approach	Value
Lohmann et al. ECHAM5-HAM		Sulfur cycle, with off-line monthly mean oxidants	Double- moment <mark>modal</mark>	SO ₄ ,OC,BC, SS,D	Online	-0.7
Rotstayr	$\frac{1}{20}$ chemistry	Sulfur cycle, with off-line monthly mean oxidants	bulk	SO ₄ ,OC,BC, SS,D	Online	-0.38
Wang an (2009); Penner et al. (2011)	CAM3 met	Sulfur cycle, with off-line monthly mean oxidants.	<mark>modal</mark> (two modes for sulfate)	SO ₄ ,OC,BC, SS,D	Offline	-1.65 and -1.69
Zhor Simpl	ified	Sulfur cycle, with off-line monthly mean oxidants	modal (3 modes for sulfate)	SO ₄ ,OC,BC, SS,D	Offline	-1.74 to -1.77
Microphysics						-1.26 to - 1.44
Bauer and Menon	GISS-modelE	Sulfur cycle, with off-line	modal (2	SO ₄ ,OC,BC,	Online	-0.17
² Not all major		concentrations.	moment)	NH4		
Deand (2 aerosols		ulfur cycle , oxidants from 1 <mark>online</mark> chemistry model	<mark>bulk</mark>	SO_4	On-line	-0.36
cons	sidered				Offline	-0.39
Belloum et al.	HadGEM	Sulfur cycle, oxidants from	bulk	SO ₄ , NH4,	Online	-1.48
(2012)		an <mark>online</mark> chemistry model	modal	OC,BC,SS, <mark>SOA</mark>		-1.17

Dust storm over Denver, Colorado. (Source: worldgeography.com)

Advanced Particle Microphysics (APM) model

APM aerosol representation

Secondary particles (SP): 40 bins

BC: 2 log-normal modes (one for fossil fuel, the other for biomass burning) for hydrophobic BC and 2 similar modes

Primary OC (POC): Similar to BC, 4 log-normal modes **Coating tracers**: 2 for each type of primary particles

Key features of APM in GEOS-Chem and WRF-Chem

Ion-Mediated Nucleation (IMN): derived from a kinetic nucleation model constrained by multiple laboratory thermodynamic data and verified by field measurements (Yu and Turco, GRL1997, GRL 2000, JGR 2001, ACP 2008, 2011; Yu, JCP 2005, ACP 2006, JGR 2010)

- Equilibrium uptake of NH₃, HNO₃, and H₂O: ISORROPIA II (Fountoukis and Nenes, ACP, 2007)
- SOA formation: Extended 2-product method which considers successive oxidation aging and kinetic condensation (Yu, ACP, 2011)
- Mixing state: Semi-externally mixed that tracks the amount of secondary species coated on primary particles (Yu and Luo, ACP, 2009; Yu et al., ACP, 2011)
- Validation: Computationally efficient and simulations validated by a large number field measurements (Yu and Luo, 2009, 2010; Yu, 2010; Luo and Yu, 2011a, b; Yu et al., 2011, 2012; Ma et al., 2012a, b)

GEOS-Chem-APM (Yu and Luo, 2009)

- Full chemistry (NOx, SOx, VOCs, etc.)
- ✓ Full size-resolved microphysics
- Offline assimilated meteorology
- Suitable for studies of processes and global long-term simulations

Computing cost (24-core workstation)

WRF-Chem-APM (Luo and Yu, 2011)

- Full chemistry (NOx, SOx, VOCs, etc.)
- Full size-resolved microphysics
- Online forecasted meteorology
- Suitable for regional short-term simulations and forecasting with high resolution

Computing cost (24-core workstation)

GEOS-Chem (2	°x2.5° , 47 layers, 1 yr)	WRF-Chem (140x108x34 grid boxes, 1 day)		
Original model	With APM	8-bin MOSAIC	With APM	
59 tracers	59+88= 147 tracers	213 tracers	138 tracers	
~ <mark>5</mark> dav	~ 11 davs	~ 6 hrs	~ <mark>2</mark> hrs	

The same APM incorporated in GEOS-Chem and WRF-Chem has also been integrated into CESM-CAM5 in this study

- ✓ Full size-resolved (bin) microphysics;
- Coating of secondary species on primary particles tracked;
- Work with either simplified sulfur chemistry (offline oxidants) or full online chemistry (MOZART)
- Added ISORROPIA II (Fountoukis and Nenes, ACP, 2007) to CESM-CAM5-APM to calculate the uptake of HNO3, NH3, and H2O.
- ✓ Suitable for chemistry-aerosol-cloud-precipitation-climate study

Computing cost (24-core workstation, 1.9°x2.5°, 30 layers, 1 yr)

CAM5 (Simplifi	ed sulfur chemistry)	CAM5-MOZART-APM (full chemistry)
MAM3	With APM	
20 tracers	20+96= 116 tracers	20+96+87= 203 tracers
~ 2 day	∼ <mark>4</mark> days	∼ 6 days

CAM5-MOZART-MAM3-APM simulations

Preliminary results

(Oxidation aging and SOA not considered yet)

Coating of sulfate on dust

90°N

45°N -

0°

45°S -

90°S

180°

Summary

A computationally efficient advanced particle microphysics (APM) model, same as the one in GEOS-Chem-APM and WRF-Chem-APM, has been integrated into CAM5. In addition to full size-resolved (bin) microphysics, coating of secondary species on primary particles is explicitly tracked. We have also added ISORROPIA II to calculate the uptake of HNO₃, NH₃, and H₂O.

CAM5-APM works with either simplified sulfur chemistry (offline oxidants) or full online chemistry (MOZART).

Preliminary CAM5-MOZART-MAM3-APM simulations indicate large difference of CCN predicted by MAM3 and APM.

APM provides a large amount of additional information about aerosol properties that may be important for chemistry-aerosol-cloud-precipitation-climate interactions processes.

Future Research

Refine APM schemes in CAM5, especially SOA formation and size-dependent wet-scavenging., and then fully evaluate the CAM5-APM simulations with various observations (total number concentration, CCN, AOD, size distribution, composition, etc.). Compare CAM5-APM results with simulations of other models (including CAM5-MAM, GEOS-Chem-APM, etc.).

Connect APM aerosol with cloud activation scheme to study aerosol-cloud-precipitation interactions. Investigate the impacts of various aerosol related chemical and microphysical processes.

Use CAM5-MOZART-APM simulations as a benchmark to develop schemes to improve the computationally more efficient CAM5-MAM and CAM5-APM versions of the model for long-term climate change simulations.

Thank you !

Aerosol Direct and Indirect Climate Effects

reflected solar radiation, and wavy lines represent terrestrial radiation. The filled white circles indicate cloud droplet number concentration (CUNC). The unperturbed cloud contains larger cloud drops as only natural aerosols are available as cloud condensation nuclei, while the perturbed cloud contains a greater number of smaller cloud drops as both natural and anthropogenic aerosols are available as cloud condensation nuclei (CCN). The vertical grey dashes represent rainfall, and LWC refers to the liquid water content.

IPCC, 2007

Aerosol radiative forcing uncertainty

Aerosol radiative forcing remains the largest uncertainty among the various climate forcing factors (IPCC, 2007).

The uncertainties can be attributed to a number of issues, such as the emissions of precursor gases and primary particles, parameterizations of physical and chemical processes, meteorological conditions, aerosol properties, etc..

According to aerosol model inter-comparison (AeroCom) project, model diversity was not greatly reduced by unifying emissions, indicating that the greatest model differences are due to features such as meteorology and aerosol treatments rather than from emissions.

Simulated a6CN/IN Ext^eCôef. particle size distribution at Hyytiälä

Data acknowledgements: Prof Markku Kulmala, CREATE and EUSSAR data base.

First aerosol indirect radiative forcing

Post-

