

Proudly Operated by Battelle Since 1965

Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

S.-Y. WANG¹, MICHELLE L'HEUREUX², JIN-HO YOON³

¹UTAH STATE UNIVERSITY, ²CPC/NOAA, ³PNNL

18th Annual CESM Workshop

Are Greenhouse Gases Changing

Proudly Operated by Battelle Since 1965

ENSO Precursors in the Western North Pacific?

Response Of East Indian And West Pacific Ocean SST Anomalies To ENSO Events Opposes The "Normal" Response

(During El Nino Events, SST Anomalies Of Portions Of East Indian and West Pacific Oceans Drop)

(Wang and An 2002; Guan and Nigam 2008)

ENSO precursor: WNP

Western North Pacific

ENSO precursor: WNP

Western North Pacific

Why Western North Pacific (WNP)?

SST DJF Mean

(1) East Asian Winter Monsoon impact

Kuroshio Current

Barotropic model w/ composite WNP heat source/sink

Why Western North Pacific (WNP)?

ion of SST with -M/NP(**b)** Regression of SST & $\mathbf{V}_{\mathtt{s}}$ with -WNP(Ð,JF мам والمستعدية المحمد والعر ALL JJA EQ 403 SO s,oн Allellen ALLEN ANTREST DJF4 DJF±1 (d) Cross correlation w/ Nino-3.4 (DJF (c) Cross correlation w/ Nino-3.4(DJF+1) -WNP -WNP 0.0 0.5 0.4

(2) Oceanic Kelvin wave zonal wind triggered

Proudly Operated by Battelle Since 1965

Is **GHG forcing** enhancing ENSO precursors in the Western North Pacific?

25-yr sliding correlation of SSTA

Proudly Operated by Battelle Since 1965

WNP vs. Nino-3.4

25-yr sliding correlation of SSTA

Proudly Operated by Battelle Since 1965

Historical forcing experiments (1850-2005):

) CESM simulations

Community Earth System Model

1.8 ← holy cow

year

Other Models (from CMIP5)

Proudly Operated by Battelle Since 1965

Lead-lag correlation of NINO3.4 with SST

Proudly Operated by Battelle Since 1965

Observations

CESM1-CAM5.1-FV2

Proudly Operated by Battelle Since 1965

• NPO-*like* mode leads WNP to trigger ENSO

• GHG appears to enhance (accelerate) this process

Proudly Operated by Battelle Since 1965

- S.-Y. (Simon) Wang (USU), Michelle L'Heureux (CPC/NOAA)
- Many discussions with B. Anderson (BU), K. Balaguru (PNNL), and more.
- Support from Earth System Modeling program/Office of Science/US DOE.

S.-Y. Wang, M. L'Heureux, and J.-H. Yoon, 2013: Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?, in print, J. Climate (CESM special issue), doi:10.1175/JCLI-D-12-00360.1

And it's only half the story!

Back-up slides

Proudly Operated by Battelle Since 1965

WNP warming & dynamics

Proudly Operated by Battelle Since 1965

Composite analysis:

NCEP + 20CR & HadSST

WNP warming & dynamics

Proudly Operated by Battelle Since 1965

CAM - the Atmospheric Component of CCSM/CESM

Model	CCSM3 (2004)	CCSM3.5 (2007)	CCSM4 (Apr 2010)	CESM1 (Jun 2010)
Atmosphere	CAM3 (L26)	CAM3.5 (L26)	CAM4 (L26)	CAM5 (L30)
Boundary Layer Turbulence	Holtslag-Boville (93) Dry Turbulence	Holtslag-Boville	Holtslag-Boville	Bretherton-Park (09) Moist Turbulence
Shallow Convection	Hack (94)	Hack	Hack	Park-Bretherton (09) Shallow Convection
Deep Convection	Zhang-McFarlane (95)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)
Cloud Macrophysics	Zhang et al. (03)	Zhang et al. with Park & Vavrus' mods.	Zhang et al. with Park & Vavrus' mods.	Park-Bretherton-Rasch (10) Cloud Macrophysics
Stratiform Microphysics	Rasch-Kristjansson (98) Single Moment	RK Single Moment	RK Single Moment	Morrison and Gettelman (08) Double Moment
Radiation / Optics	CAMRT (01)	CAMRT	CAMRT	RRTMG lacono et al.(08) / Mitchell (08)
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM	Modal Aerosol Model (MAM) Liu & Ghan (2009)
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume	Finite Volume
Ocean	POP2 (L40)	POP2.1 (L60)	POP2.2 - <i>BGC</i>	POP2.2
Land	CLM3	CLM3.5	CLM4 - <i>CN</i>	CLM4
Sea Ice	CSIM4	CSIM4	CICE	CICE

What is the SFM (Seasonal Footprinting Mechanicm) or PMM (Pacific Meridional Mode)?

Atmo-Ocean coupled climate variability

- → MCA (Maximum Covariance Analysis, or SVD of Bretherton et al. 1992)
- ightarrow similar to Multi-variate EOF

The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO*

DANIEL J. VIMONT, JOHN M. WALLACE, AND DAVID S. BATTISTI

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 15 February 2002, in final form 23 July 2002)

ABSTRACT

Midlatitude atmospheric variability is identified as a particularly effective component of the stochastic forcing of ENSO. This forcing is realized via a seasonal footprinting mechanism (SFM), in which the tropical atmosphere is forced during the spring and summer by SST anomalies generated by midlatitude atmospheric variability during the previous winter. The strong relationship between the SFM and ENSO may serve to enhance ENSO predictability and supports the view that ENSO is linearly stable in nature.

Correlation for ENSO precursors

Proudly Operated by Battelle Since 1965

Pacific Northwes WNP warming & dynamics NATIONAL LAB **CESM** free run Community Earth System Model CESM 350-year control run (natural variability) 6ÓE 120E 180 120₩ BÓW Top panel minus Middle panel Top minus Middle

Why Western North Pacific (WNP)?

KW dynamic height composite

(2) Oceanic Kelvin wave zonal wind triggered

ENSO precursor: WNP

Western North Pacific

