

Calibrating soybean parameters in CLM-Crop using an MCMC approach

Beth Drewniak, Xiaoyan Zeng, and Emil Constantinescu

Work supported by DOE BER through the Climate Science for a Sustainable Energy Future (CSSEF) project

CLM-Crop Development

- The CLM-Crop model is a agricultural module that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. (Drewniak et al., 2013)
- CLM-Crop development used measurements of GPP, NEE, and carbon from AmeriFlux data to choose parameter values that optimize crop productivity in the model.

Photo courtesy of David Cook

- Components of CLM-Crop integrated into the CLM4.5
 - Separate organs pool
 - Fertilization
 - Soybean nitrogen fixation
 - Nitrogen retranslocation
 - New carbon nitrogen ratios

Motivation

- Differences between CLM3.5 and CLM4 crop models
- Major concern is crops are not as productive in CLM4
- Need to calibrate the parameters governing growth
- But over 100 parameters
 - Carbon nitrogen ratios :
 - Leaf (pre- and post-grain fill)
 - Stem (pre- and post-grain fill)
 - Organ
- Focus on soybean crop first
- Use data from Bondville, IL AmeriFlux site

Calibration Strategy

Parallel Markov chain Monte Carlo (MCMC) strategy for the CLM-Crop model: multiple chains are run in parallel and exchange information as they evolve

CLM-Crop model calibration setup:

sample posterior distribution for model parameters

 $\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta)$

parallel MCMC chains

evolution of live stem C/N value in 8 Markov chains

Performed soy carbon nitrogen ratio calibration; explored C, N & litter pools as calibration parameters

MCMC Implementation

• Parallel adaptive MCMC strategy to determine the posterior distribution of parameters given observations

• Assume prior and likelihood:

$$\log(\pi(\theta)) = -\frac{1}{2}(\theta - \overline{\theta})^T \Sigma_{\theta}^{-1}(\theta - \overline{\theta})$$
$$\log(\pi(y|\theta)) = -\frac{1}{2}(F(\theta) - H(y))^T \Sigma_{\text{obs}}^{-1}(F(\theta) - H(y))$$

• compute posterior using Bayes rule: $\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta)$

• use a parallel MCMC implementation to accelerate and diagnose the convergence by running several Markov chains in parallel while adjusting a Gaussian proposal distribution according to their spread

Standard MCMC algorithm:

Given the target density $\pi(x)$, pick a symmetric **proposal density** $Q(x'|x_t)$, start with x_0 , t = 0 then proceed as follows: 1. generate a proposed new sample value from $Q(x'|x_t)$

2. calculate
$$\alpha = \frac{\pi(x')}{\pi(x_t)}$$

3. pick u from uniform 0 and 1, and if $u < \alpha$ set $x_{t+1} = x'$, else set $x_{t+1} = x_t$; set t = t+1, go to 1.

Validation of the Calibration Strategy

- Simple synthetic example:
 - proposal is auto-tuned
 - chains are run in parallel
 - [Craiu et al 2009]; [Zeng et al 2013]

- CLM-Crop: complex, relatively inexpensive: 2 min/simulated year
- Parallel chains:
 - Convergence is accelerated by adapting the proposal
 - Diagnostics are obtained from (inter-/intra- chain variance)
 - [Zeng et al 2013]

CLM-Crop Model Calibration: Results using Bondville site observations

- Preliminary calibration results for soy carbon nitrogen ratio with validation
- Performance metric: match the filtered peak and slope during emergence

Obtained new calibrated parameters for soy that give significantly better fit with data

Calibration results: soybean (2004)

Validation results: soybean (2002)

Moving Forward

- Need to expand
 - Number of parameters
 - Crop types
- Computationally expansive takes too long to converge
- Work on developing surrogate models for parameter calibration

Photo http://landcovertrends.usgs.gov/east/eco70Report.html

This work was supported by the Office of Biological and Environmental Research, U.S. Department of Energy, under contract KP-17-03-02-0 through the Climate Science for a Sustainable Energy Future (CSSEF) project.