Analysis of Altimetry and Imagery Data and Comparison to CICE Results

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

 Department of Electrical, Computer and Energy Engineering
 Cooperative Institute for Research in Environmental Sciences

 (3) Department of Applied Mathematics
 University of Colorado Boulder
 (4) T-3 Fluid Dynamics and Solid Mechanics Group Los Alamos National Laboratory

CESM Polar Working Group Meeting, June 17-20, 2013

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Thanks to my collaborators and students ...

Geomath Team: Phil Chen, Bruce Wallin (now NMTech), Ian Crocker, Maciej Stachura, Alex Weltmann, Lance Bradbury, Alex Yearsley, Griffin Hale, SeanOGrady, Steve Sucht, Scott Williams (now google)

ICESat and ICESat-2: Waleed Abdalati (CUB), Bea Csatho (U Buffalo NY) and ICESat science team/ ICESat-2 SDT Alexander Marshak, Steve Palm; Thorsten Markus, Tom Neumann and the ICESAt-2 Project, Kelly Brunt, Jay Zwally, John DiMarzio, Anita Brenner, Kristine Barbieri, LeeAnne Roberts (NASA Goddard Space Flight Center)

IceBridge: William Krabill, Serdar Manizade (NASA Goddard Space Flight Center) and collaborators;

CASIE and SeatcelPY. James Maslanik (CCAR, CU Boulder), Ron Kwok (JPL), John Heinrichs (Ft. Hays State Univ, KS), David Long (BYU Provo), Matt Fladeland and SIERRA Team at NASA Ames Research Center

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

... and for support through

- Los Alamos Institute for Geophysics and Planetary Physics
- NASA Cryospheric Sciences
- NSF Arctic Sciences
- NSF Hydrological Sciences
- Deutsche Forschungsgemeinschaft (DFG), Antarctic and Arctic Research Program
- University of Colorado UROP Program

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke

CASIE Analysis: Altimetry and Imagery

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Objectives of Ice Classification

- (1) Characterization of ice provinces: Establish a unique quantitative description of each ice type
- (2) Classification: Assign a given object to a surface class, using the characterization
- (3) Segmentation: Create a thematic map by applying the classification operator in a moving window

Transfer to Modeling

- (1) Parameterization of spatial sea-ice properties, based on characterization
- (2) Summarize properties of ice types, based on classification
- (3) Simplify regional ice-type distributions for model input at larger/ regional scale, based on segmentation

CASIE Experiment 2009 Fram Strait

- CASIE Characterization of Arctic Sea Ice Experiment July/ August 2009 from a base in Nye Alesund, Svalbard SIERRA UAV, NASA AMES Research Center: Matthew Fladeland and collaborators Experiment science: Jim Maslanik (P.I.), Ute Herzfeld (Co-I.), David Long (Co-I.), R. Kwok (Co-I.), Ian Crocker, K. Wegrezyn
- NASA IPY sea-ice roughness project: J. Maslanik, U. Herzfeld, J. Heinrichs, D. Long, R. Kwok

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

NASA AMES SIERRA: Cold-Weather System Test with CU-ULS (March 2009) photograph by Don Herlth

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

BYU mSAR panels integrated in SIERRA

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

NASA AMES SIERRA: Ny Alesund, Svalbard

photograph by Ian Crocker

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

flight tracks

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

What is spatial surface roughness?

- a derivative of (micro)topography \rightarrow characterization of spatial behavior

Why do we need spatial surface roughness?

- sub-scale information for satellite measurements
- indicator variable for other, harder to observe processes
- parameterization of sub-scale features or processes

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

The analytically defined spatial derivative needs to be calculated numerically from a data set.

One way to do this:

$$\lim_{x\to x_0}\frac{z(x_0)-z(x)}{x_0-x}$$

surface slope in a given location x_0

To characterize morphology, better use averages...

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Definition of Vario Functions

 $V = \{(x, z) \text{ with } x = (x_1, x_2) \in \mathcal{D} \text{ and } z = z(x)\} \subseteq \mathcal{R}^3$

discrete-surface case or

$$V = \{(x, z) \text{ with } x \in \mathcal{D} \text{ and } z = z(x)\} \subseteq \mathcal{R}^2$$

discrete-profile case

Define the first-order vario function v_1

$$v_1(h) = \frac{1}{2n} \sum_{i=1}^n [z(x_i) - z(x_i + h)]^2$$

with $(x_i, z(x_i)), (x_i + h, z(x_i + h)) \in D$ and *n* the number of pairs separated by *h*.

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Higher-Order Vario Functions

The first-order vario-function set is

$$V_1 = \{(h, v_1(h))\} = \underline{v}(V_0)$$

Then: get V_2 from V_1 in the same way you get V_1 from V_0 . The second-order vario function is also called varvar function.

Recursively, the vario function set of order i + 1 is defined by

$$V_{i+1} = \underline{v}(V_i)$$

for $i \in \mathcal{N}_0$.

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Geostatistical Classification Parameters

significance parameters:

slope parameter:

$$\mathfrak{p}1=rac{\gamma_{ extsf{max}_1}-\gamma_{ extsf{min}_1}}{h_{ extsf{min}_1}-h_{ extsf{max}_1}}$$

relative significance parameter:

$$p2 = \frac{\gamma_{max_1} - \gamma_{min_1}}{\gamma_{max_1}}$$

pond – maximum vario value mindist – distance to first min after first max

$$avgspac = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} h_{min_i}$$

typically for n = 3 or n = 4

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Roughness length approximation:

arl
$$=rac{1}{2}\sqrt{2}$$
pond

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Laser altimeter data — correction method

Correction ingredients

- (1) 1 Hz GPS data, collected on-board SIERRA
- (2) cubic splines to correct for longer range aircraft motion
- (3) altimetry / geolocation residuals wrt to fitted splines

Shown at left: 2 segments with double tracks, altimetry over microASAR Top: Segment 1, Flight 9 Bottom: Segment 2, Flight 9 2009-07-25

ARL from altimetry and matching microASAR data

Segment 1 (msar104), Flight 9, 2009-07-25, CASIE 2009

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

ARL Histogram from CASIE Laser Data

CASIE ULS ARL Histogram

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Along-track ARL - CASIE July 2009 - Over Ice

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

ARL CASIE Laser Data - Flight Track

CASIE ULS Flight Track

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

CICE Model Run For CASIE Flight 09 Time Deformed Ice Area Fraction – July 2009

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Sail Height Histogram from CASIE Laser Data

CASIE ULS Sail Height Histogram

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

CICE Model Run For CASIE Flight 09 Time Sail Height – July 2009

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Deformed Ice Dependent on CICE Model Parameters

Parameter	Northern Hem.	Casie Mask (35 Nodes)
orginal	31.1634	38.1931
astar.03	32.4175	45.5128
astar.07	30.9051	39.2194
maxraft.17	33.0950	41.8181
maxraft2	30.7335	37.6406
murdg4	24.6877	27.6685
murdg5	20.2645	21.2877
Cf10	41.5542	63.9714
Cs.5	36.6809	50.2486

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Model Results

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Model Results

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Definition revisited

CASIE image 1-20090725-10-33-55-IMG-4580-R.jpg

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴ Analysis of Altimetry and Imagery Data and Comparison to Cli

Approach for measuring deformed sea ice areas from imagery

- Use high-resolution CASIE imagery
- Geo-reference all images individually using GPS data
- Define a *pond*-filter that identifies ridge areas
- Apply this to images in all grid cells

To Do: Compare that to ARL

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

CASIE image 20090725-15.36.22-IMG-9080.jpeg

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Geostatistical Classification Parameters Applied To Sea-Ice Image

mindist

pond

p2

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

CASIE image 1-20090725-10-33-55-IMG-4580-R.jpg

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

Determination of Deformed Ice Area Using Geostatistical Classification

mindist

p2

Deformed Ice from CASIE Images (pond)

Latitude	Longitude	% Ridged Ice
80.06551361	4.50762939	9.46214414035
80.08296967	1.27127075	11.6643353086
80.21040344	4.5546875	13.6099826824
80.2192688	1.26473999	12.3897421788
80.35453033	4.58929443	11.8910531342
80.35469818	1.24539185	12.0757602732
80.44387054	-2.15808105	16.299423827
80.48925018	1.21295166	14.1650751776
80.49788666	4.6111145	10.9840662275
80.56816101	-2.25061035	18.5388512147
80.62290192	1.16702271	14.1661271789
80.69143677	-2.35668945	21.4184618124
80.70297241	-5.90551758	23.4446026942
80.75563049	1.10736084	15.0469354395
80.81368256	-2.47665405	23.4854014599
80.81427002	-6.0753479	18.4906210044
80.88742828	1.03353882	19.9097706637
80.93487549	-2.61074829	23.9840593802
81.01826477	0.94525146	13.8140709211
81.05499268	-2.75927734	17.2569472543
81.17401123	-2.92260742	17.0840548983
81.29190826	-3.1010437	14.5342062246
81.40483093	0.58953857	19.6372618836
81.53162384	0.43930054	16.6952595206

- from 25 nodes (ice-covered regions only)

- threshold for classification: 60 < pond < 200 to determine ridged ice areas Ξ) Ξ) 9.0 \circ

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

NASA Operation Ice Bridge — Flight Tracks

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke

NASA Operation Ice Bridge — Flight Tracks

from Jackie Richter-Menge, Feb 11, 2013

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴

OIB data

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke

OIB data

ian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴ \square

Conclusions and Future Work

- Definition of Ridge
- Expand Analysis for More Coverage
- Reflecting Results in Models

Questions?

Brian McDonald¹, Ute C. Herzfeld^{1,2,3}, and Elizabeth Hunke⁴