The Cryosphere Radiative Effect in CESM

Justin Perket Mark Flanner

CESM Polar Climate Working Group Meeting Wednesday June 19, 2013

Cryosphere Radiative Effect (CrRE)

- A new diagnostic feature is available for CESM:
 - Cryoshere Radiative Effect (CrRE): the instantaneous influence of surface snow and ice on TOA energy budget
 - Analogous to the cloud radiative effect
 - Able to calculate snow & ice related effects on albedo & energy flux at every radiation calculation without altering climate state
- Realistic portrayal of cryospheric change is critical for accurate climate change modeling
- Snow and sea-ice cover metrics are important and often used to valuate climate models, but do not capture the cryospheric radiative influence
- CrRE incorporates influences of vegetation, ice ponding, insolation, cloud cover, and underlying albedo

Computing Cryosphere Radiative Effect

- Extracts snow-free albedo from CLM and calculates ice-free ocean albedo in CICE
- New snow-free CLM and ice-free open ocean CICE variables merged in CPL to create cryosphere-free surface albedos, then CAM shortwave driver calculates fluxes for the cryosphere-free situation

Computing Cryosphere Radiative Effect

- The original model albedos remain unmodified by code
- < 20% increase to computation time in B RCP compset
- Implemented in CESM 1.0.3 & 1.1.1

Visible Direct Albedo

0.5

0.4

0.1

0.2

0.3

0.6

0.7

0.8

0.9

Clearsky FSNT at TOA

RCP 8.5 Scenario Run

- CESM 1.1.1,
 B_RCP8.5_CAM5_CN
- 1° resolution
- 21st simulation to investigation evolution of cryosphere influence
- Resources from PCWG

RCP 8.5 Scenario Run, Hemisphere Means

Decadal Change in CrRE from 2007-2016

Decadal CrRE, 2007-2100

Time Evolution of NH Cr Radiative Effect

- North Hemisphere absorbs additional ~2.0 W/m² by 2100 from reduced cryosphere extent
- Greater decrease in sea-ice radiative influence than land

Difference in CrRE 2099-2007			
(W/m²)	Total	Snow	Sea Ice
Global	1.8	0.5	1.3
NH	2.0	0.8	1.2
SH	1.6	0.1	1.5

Time Evolution of NH Cr Radiative Effect

- Effect of normal TOA CrRE not linear with clear-sky TOA CrRE
- Evolution is influenced by changes in atmospheric conditions, among other factors

NH CrRE on TOA SW Flux, and Clearsky TOA SW Flux

Initial Comparison with Observation

- Now have 1979-2008 observational record of CrRE derived from remote sensing measurements (Flanner et al, 2011)
- Compared with 2° res CESM 1.0.3 CAM4 E_2000 run

Initial Comparison with Observation

- Now have 1979-2008 observational record of CrRE derived from remote sensing measurements (Flanner et al, 2011)
- Compared with 2° res CESM 1.0.3 CAM4 E_2000 run

Comparison with Observation

- Agreement between model and observation-based TOA CrRE
- Demonstrates *increase* in surface downwelling from surface/cloud multiple scattering

Summary

- Cryosphere Radiative Effect (CrRE) diagnostic in CESM gives exact, instantaneous influence of snow and ice on shortwave radiation including atmosphere effects
- Initial present-day NH observation assessment favorable, but some regional discrepancies in seasonal cycle
- Globe absorbs ~0.46 W/m² more from snow loss, ~1.3 W/m² from ice loss by 2100 in CESM1.1 RCP8.5
- Potential incorporation in trunk
- Future research: Explore influences on CrRE & its evolution, including cloud conditions, ponding, and snow/ice aging