# Carbon Isotopes in the iCESM

## **Alexandra Jahn**

<u>Collaborators:</u> Keith Lindsay, Mike Levy, Esther Brady, Synte Peacock, Bette Otto-Bliesner, Zhengyu Liu

The iCESM project is funded by DOE, Office of Science NCAR is sponsored by the National Science Foundation









## Carbon Isotopes and their usefulness



Stable isotopes become preferentially concentrated because of differences in their mass: this is called fractionation

 $\rightarrow$  It allows the tracing of pathways/origins of carbon





## Uses of Carbon isotopes



- Δ<sup>14</sup>C is used as proxy for the age of water masses, circulation timescales, and to infer past and present ocean water ages
- δ<sup>13</sup>C is used to infer paleo ocean water masses (e.g., NADW)
- → Simulating carbon isotopes in the model allows a more direct comparison with observations (paleo proxies and present day isotopic measurements)

# Implementation of Carbon isotopes in POP2 (as additional passive tracers)

#### - Two different implementations:

- Abiotic Radiocarbon (1 additional tracer): can be run independently of the ecosystem model, ocean-model cost increase is a factor of 1.2 compared to the normal ocean model
- Biotic <sup>13</sup>C and <sup>14</sup>C (14 additional tracers): Carbon isotopes in all seven carbon pools currently in the ecosystem. Cost increase is by a factor of 4 compared to ocean only model.<sup>13</sup>C code was based on code from ETH (Gruber et al) developed for POP1

#### + Status update:

- + Abiotic Radiocarbon is implemented, spun-up in the 3° model, and tested
- + Biotic <sup>13</sup>C & <sup>14</sup>C are implemented and spin-up in the 3° model is under



## Model set-up

- Simulations are forced by prescribed atmospheric CO<sub>2</sub>, Δ14C, δ13C data
- Spin-up simulations are forced with constant preindustrial CO<sub>2</sub> (278 ppm or 284 ppm), Δ14C (0 permil), δ13C (-6.379 permil)
- Simulations are performed in the ocean-active-only 3° POP2 model, forced by CORE normal year atmospheric forcing (C-Compset)



#### Results from abiotic Radiocarbon: <sup>14</sup>C age



#### Results from abiotic Radiocarbon: <sup>14</sup>C age



#### Adding the biological pump

- Currently there are 7 carbon pools in the ecosystem model (DIC, DOC, small phytoplancton, diatoms, diazotrophs, zooplankton, CaCO<sub>3</sub>)
- + Each Carbon isotope adds 7 tracers
  - + Currently the ecosystem model has 24 tracers
  - The 14 additional carbon isotopes increases the ocean-model computation cost by:
    - a factor of 1.4 compared to just running the ecosystem model,
    - a factor of 4 compared to just running the ocean-only model without the ecosystem



## Adding an ecosystem driver



# First, very preliminary results from the spin-up of biotic <sup>13</sup>C isotope simulation (year 1500)



Model compared to the d13C dataset complied by Schmittner et al (2013)

# First, very preliminary results from the spin-up of biotic <sup>14</sup>C isotope simulation (year 1500)



# Update: Carbon isotopes in the land model (CLM4.5)

- <sup>13</sup>C and <sup>14</sup>C tracers have been added to the CLM4.5 land model as fully-prognostic variables
- The CLM4.5 has been spunup in stand-alone mode for over 7000 years to equilibrium and more testing is under way
- Developers: A. Bozbiyik, J.
  Fortunat (University of Bern),
  W. Riley, C. Koven (LBNL), D.
  Lawrence (NCAR)

#### Global $\delta^{13}$ C of the Total Vegetation



# Next steps for the Carbon isotope development in CESM

- Add <sup>13</sup>C and <sup>14</sup>C isotope tracers to the atmosphere
- Couple the carbon isotope enabled iCAM5, iCLM4.5, and iPOP2 for a coupled carbon isotope simulation
- Consider adding carbon isotopes in CICE?



## Future work

- + Complete and analyze the biotic POP2 Carbon isotope spin-up simulation
- Spin-up carbon tracers for use in the the 1° coupled CESM (need fast spin-up technique for this)
- Include tracers in paleo simulations
  - Use the coupled carbon isotopes to investigate the Mystery Interval and the LGM
  - Compare simulations to observations, using the new tracers for more direct (but still not "apple to apple") comparisons
  - Investigate how the physical climate parameters from the model (temperature, density, etc) relate to the simulated geochemical tracers
- Add tracers for Protactinium (Pa) and Thorium (Th) to the ecosystem model of the CESM as additional tracer for the strength of the overturning circulation

# Thanks!

Contact: ajahn@ucar.edu







