
Heuristic Static Load-Balancing Algorithm
Applied to CESM

1Yuri Alexeev, 1Sheri Mickelson,
1Sven Leyffer, 1Robert Jacob, 2Anthony Craig

1Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA

2CCSM Software Engineering Group, NCAR, Boulder, CO 80305, USA

Argonne National Laboratory supercomputers

2

 40,960 nodes / 163,840 cores
 557 Teraflops peak
 PowerPC 450 with 4 cores/node at 850 MHz
 Double FPU – 2 wide double precision SIMD
 512 MB per core

Intrepid (IBM Blue Gene/P)

 49,152 nodes / 786,432 cores
 10 Petaflops peak
 PowerPC A2 with 16 cores/node at 1.6 GHz
 Quad FPU – 4 wide double precision SIMD
 1Gb per core

Mira(IBM Blue Gene/Q)

CESM setup

CESM fully coupled active components, 1 degree resolution: f09_g16.B
Calculations were run on Intrepid (40 racks Blue Gene/P)
Goal: minimize total execution time

3

Time

Node allocation

Heuristic Static Load-Balancing (HSLB) Algorithm

(1) Gather Data: Run CESM calculations D times using a different total numbers
of cores. Collect the running times yij for each component i.

(2) Fit: Next, solve least squares problem for each component to determine the
coefficients ai, bi, ci, and di for each fragment i in performance model.

(3) Solve: Determine the best allocation by solving the MINLP, and obtain the
optimal values of size ni for each component i.

(4) Execute: Execute CESM simulations, using the determined subgroup sizes in
step (3).

4

Gather data for step (1)

Calculations were run on 512, 1024, 2048, 4096, 8192 cores

5

Performance model for step (2)

 - the wall-clock time to compute the ith component as a function of
the number of cores allocated to process it

 - time spent in perfectly scalable portion of the component

 - time spent in the non-parallelized portion of the component

 - time spent in partially parallelized portion: initialization,
communication, and synchronization etc. (anything nonlinear and not serial)

Model makes sense both mathematically and from the viewpoint of Amdahl’s law

6

Ciidc
inib

in
iaserial

iTinnonlin
iTinscal

iTiniT i ,...,1 ,)()()(=++=++=

)(iniT

in
ia

inscal
iT =)(

idserial
iT =

ic
inibinnonlin

iT =)(

in

Fitting data for step (2)

Obtain the best fit by solving the least squares problem

7

+ℜ∈
=














−−−∑

idicibia

D

j
idc

ijnib
ijn
ia

ijy
dcba

i

i

iiii

,,, subject to
1

2

,,,
min

Formulating the Optimization Problem

Problem: optimize the number of nodes, , to be allocated to each component

 minimize the total wall time over all components :

 minimize the maximum wall time used by a component :

 maximize the minimum wall time used by a component :

8

in
},...1{ Ci∈

∑
=

C

i
iniT

n 1
)(min

)(minmax iniT
in

)(maxmin iniT
in

time

Number of nodes

Formulating the mathematical problem for step (3)

9

1 Given: + - set of positive integer numbers
2 + - set of positive real numbers
3 { } { , , , }C ice,lnd,atm,ocn i l a o= = - set of

components
4 N∈ + - total number of nodes available for

allocation
5 { } { }O 2,4,…,480,768 O ,…,O1 m= = -

possible allocations for ocn
6 { } { }A 1,2,…,1638,1664 A ,…, A1 m= = -

possible allocations for atm
7 Variables: T∈ + - wall-clock time obtained by solving

allocation problem
8 Ticelnd∈ + - wall-clock time to balance lnd

and ice
9 Tsync∈ + - synchronization tolerance to

balance lnd and ice
10 n j∈ + - number of nodes allocated

11 ()T nj j ∈ + - (fitted) performance function

modeling time taken to run on n j

12 {0,1}zk∈ - binary variables to model selection of

number nodes, no
13 Minimize: T
 Constraints for layout (1)
14 Subject to: ()T T nicelnd i i≥
15 ()T T nicelnd l l≥
16 ()T T T nicelnd a a≥ +
17 ()T T no o≥
18 () ()T n T n Tl l i i sync≥ −

19 () ()T n T n Tl l i i sync≤ +

20 n n Na o+ ≤
21 n n ni l a+ ≤

Solving MINLP problem

 Formulation is written in AMPL
 Classical branch-and-bound [Dakin, 1965] implemented in MINOTAUR:
http://wiki.mcs.anl.gov/minotaur
 Solve relaxed NLP (continuous relaxation); solution value provides lower bound
Branch on yi

Solve NLP & branch until:
Node infeasible
Node integer feasible (get upper bound)
Lower bound
 Tree search exhaustive but not complete enumeration

 Method guarantees to find optimal global
solution or show that none exist
 Solution time is ≤ 10 seconds on a single core (155 components)

10

MINLP Tree

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

11

Results

12

CESM fully coupled active components, 1 degree resolution: f09_g16.B
Calculations were run on Intrepid (40 racks Blue Gene/P)

1° resolution, 128 nodes
 Manual HSLB

components # nodes Time, sec Predicted #
nodes

Predicted
Time, sec

Actual Time,
sec

lnd 24 63.766 15 100.951 100.202
ice 80 109.054 89 102.972 116.472
atm 104 306.952 104 307.651 308.699
ocn 24 362.669 24 365.649 365.853

Total time, sec 416.006 410.623 425.171

Results

13

CESM fully coupled active components, 1/8 degree resolution: ne240_f02_t12.B

Prediction of Optimal Layout

14

Prediction of Efficiency

15

(64) / ()()
/ 64

T T nE n
n

=

Future work

16

 Convert the AMPL code to C++ to be more portable

 Create scripts that will automate the load balancing process
- First script will gather timing data for scaling curve by creating/running 4-5 test

layouts
- Second script will analyze the timing files and produce a load balanced layout

based on how many cores the user would like to run on

Acknowledgments

17

Thank you
 Dr. Ray Loy and ALCF team members (Argonne National Laboratory)
 Jim Edwards and Mariana Vertenstein for encouraging this work and helpful

discussions.

Funding was provided by
 U.S. Department of Energy

	Heuristic Static Load-Balancing Algorithm Applied to CESM
	Argonne National Laboratory supercomputers
	CESM setup
	Heuristic Static Load-Balancing (HSLB) Algorithm
	Gather data for step (1)
	Performance model for step (2)
	Fitting data for step (2)
	Formulating the Optimization Problem
	Formulating the mathematical problem for step (3)
	Solving MINLP problem
	�MINLP Tree
	Results
	Results
	Prediction of Optimal Layout
	Prediction of Efficiency
	Future work
	Acknowledgments

