
John Dennis (dennis@ucar.edu)
Srinath Vadlamani,Youngsung Kim (NCAR)

Harald Servat, Jesus Labarta, Judit Gimenez (BSC)

  Enable NCAR applications to efficient utilize
many-core architectures

  Personnel
◦  Srinath Vadlamani (*)
◦  Youngsung Kim (*)
◦  Michael Arndt
◦  Rich Loft

  Active collaboration for HOMME on Intel Phi
◦  Mark Greenfield (Intel)
◦  Mark Lubin (Intel)
◦  Ruchira Sasanka (Intel)
◦  Sergey Egorov (Intel)
◦  Karthik Raman (Intel)
◦  Ilene Carpenter (NREL)

(*) dedicated staff

3

IBM BG/Q
Cores: 16 + 2
Multithread: 4-way
Coprocessor: no
Boot Linux: yes

Intel Phi
Cores: 61
Multithread: 4-way
Coprocessor: yes
Boot Linux: yes

NVIDIA Fermi->Kepler
DP Cores: 512->832
Multithread: 32-way
Coprocessor: yes
Boot Linux: no

  Discontinous Galerkin (DG) gradient kernel
◦  Similar to derivative kernel in CAM-SE

  Small piece of code ~100 lines
  Written in a variety of languages
◦  Fortran
◦  CUDA Fortran
◦  CUDA
◦  OpenACC

  Performance and portability
◦  Intel SandyBridge
◦  Intel Phi
◦  nVidia GPU 2070Q

5

3.7x

  Apples-to-apples comparisons are hard
  Our methodology
◦  Socket-to-socket performance
◦  Like generations of HW (as closely as possible)
◦  Best (optimized) implementations
◦  Multiple programming models

  2070q initially 6.5x Intel SNB and 3.25x Intel Phi
  After optimization this drops to 2.1x and parity
  Optimizations for Xeon Phi help SNB and vice versa
  Optimized performance much closer than expected
  OpenACC performance lags due to use of shared

memory
  Challenging to get good Phi performance

  Significant potential to improve many-core
performance

  Improvement Cycle
◦  Identify poorly performing code
  i.e. poor vectorization
◦  Restructure code
  vectorize
  Benefits both traditional and accelerator
◦  Repeat

  Automatic performance identification
◦  Barcelona Supercomputer Center (BSC)
◦  Polytechnic University of Catalonia (UPC)
◦  H. Servat, J. Labarta, J. Gimenez

  Utilize BSC tools
◦  extrae: trace collection
◦  paraver: visualization client
◦  clustering & folding tools

  Enables very detailed tracing of application
characteristics

  Creates a “performance database”
◦  time in user code
◦  time in MPI
◦  time in OpenMP
◦  hardware counters
◦  etc…

  Browse performance database with Paraver
◦  Timeline visual analysis
◦  Statistical analysis

Dynamical core

Physics wo/radiation
Physics w/radiation CPL,

CLM

  Traces of non-trivial codes can become large
  Need method to reduce data to simplify

analysis
  Automatic performance identification
  Sampled CESM at periodic intervals
  Identified repeating computational bursts

(clusters)
  Create synthetic traces to simplify analysis
  Look for inefficient sections of code

Most expensive computational cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 37.01 74.01 111.02 148.03 185.03
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000
 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
A

PI
_T

O
T_

IN
S

PA
PI

_T
O

T_
IN

S
ra

te
 (i

n
M

ev
en

ts/
s)

Normalized time

Task 22 Thread 1 - Cluster_1.0
Duration = 185.03 ms Counter = 584457.44 Kevents

Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42

Samples (1500)
Curve fitting
Counter rate

Notice drops in Instruction rates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 37.01 74.01 111.02 148.03 185.03
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000
 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
A

PI
_T

O
T_

IN
S

PA
PI

_T
O

T_
IN

S
ra

te
 (i

n
M

ev
en

ts/
s)

Normalized time

Task 22 Thread 1 - Cluster_1.0
Duration = 185.03 ms Counter = 584457.44 Kevents

Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42

Samples (1500)
Curve fitting
Counter rate

4 cycles in Cluster 1

A B C

  Group A:
◦  conden: 2.7%
◦  compute_uwshcu: 3.3%
◦  rtrnmc: 1.75%

  Group B:
◦  micro_mg_tend: 1.36% (1.73%)
◦  wetdepa_v2: 2.5%

  Group C:
◦  reftra_sw: 1.71%
◦  spcvmc_sw: 1.21%
◦  vrtqdr_sw 1.43%

Focus effort on
one subroutine

  Consists of a double nested loop
◦  Very long ~400 lines
◦  Unnecessary branches with inhibit vectorization

  Restructuring wetdepa_v2
◦  Break up long loop to simplify vectorization
◦  Promote scalar to vector temporaries
◦  Common expression elimination

Intel Phi (Intel 13.1.1) Intel Sandybridge (Intel 13.1.2)

-O2 -O3 -O3 -fast -O2 -O3 -O3 -fast

orig 42.85 41.24 3.74 3.43 3.32 0.97

mod 6.50 6.61 4.58 1.09 1.12 1.04

9.3 x 3.5x

Significant potential for reducing execution time !

Increase in code vectorization

Reduction in cycles stalled on resources

  CESM B-case, NE=16, 570 cores
  Yellowstone, Intel (13.1.1) –O2
  Original version:
◦  2.5% total time
◦  492.6 ms

  Modified version:
◦  0.73% total time
◦  121.1 ms

  Actual improvement: 4.07x

  Simple loop was vectorized using aggressive
optimization (-O3 –fast)

  Correctness issues are problematic at high
optimization levels

  Effort to extract wetdepa_v2 much larger then
actual time to optimize

  Code restructuring will be necessary in
general

  Identify “healthy” patient [DG-kernel]
◦  Perform a panel of medical tests [PAPI + extrae]

  Perform panel of medical tests on large
application (CESM/WRF/MPAS/DART)
◦  Look at tests for sections of full application differs from

“healthy” patient
◦  Diagnose performance problems based on groups of

“symptom”
◦  Address identified performance problems

  Generic approach, suitable for all platforms
◦  Intel SNB, Intel Phi, AMD Interlagos, nVidia Kepler, IBM

A2
  Exact nature of tests may differ

  Write code that vectorizes
◦  Don’t do this:

do i=1,pcols
 call sub1()
 call sub2()
 call sub3()
 …

◦  Instead
do i=1,pcols

 srcc(i) = srcs1(i) + srcs2(i) ! convective tend by both processes
 finc(i) = srcs1(i)/(srcc(i) + eps) ! fraction in-cloud
 srcs1(i) = 0._r8

 odds(i) = precabs(i)/max(cldvst(i,k),1.e-5_r8)*scavcoef(i,k)*deltat
 odds(i) = max(min(1._r8,odds(i)),0._r8)

 …

Will never vectorize

  Create/use drivers or unit tests for all new
code
◦  Simplifies development and debugging
◦  Simple performance testing and restructuring of

code
  Unit tests for parameterization
◦  Community Ocean Vertical Mixing (CVMix) Project
◦  CLUBB, UNICORN?

  Dedicated group within CISL to address many-
core challenges

  Significant performance improvement possible
for all architectures

  Equivalent performance for Intel Phi and nVidia
2070Q on DG-Kernel

  Possible to identify poorly performing code for
CESM

  Possible to significantly increase performance
through vectorization: 4 – 9x

  Strategy for continuous improvement of CESM
performance

