
John Dennis (dennis@ucar.edu)
Srinath Vadlamani,Youngsung Kim (NCAR)

Harald Servat, Jesus Labarta, Judit Gimenez (BSC)

  Enable NCAR applications to efficient utilize
many-core architectures

  Personnel
◦  Srinath Vadlamani (*)
◦  Youngsung Kim (*)
◦  Michael Arndt
◦  Rich Loft

  Active collaboration for HOMME on Intel Phi
◦  Mark Greenfield (Intel)
◦  Mark Lubin (Intel)
◦  Ruchira Sasanka (Intel)
◦  Sergey Egorov (Intel)
◦  Karthik Raman (Intel)
◦  Ilene Carpenter (NREL)

(*) dedicated staff

3

IBM BG/Q
Cores: 16 + 2
Multithread: 4-way
Coprocessor: no
Boot Linux: yes

Intel Phi
Cores: 61
Multithread: 4-way
Coprocessor: yes
Boot Linux: yes

NVIDIA Fermi->Kepler
DP Cores: 512->832
Multithread: 32-way
Coprocessor: yes
Boot Linux: no

  Discontinous Galerkin (DG) gradient kernel
◦  Similar to derivative kernel in CAM-SE

  Small piece of code ~100 lines
  Written in a variety of languages
◦  Fortran
◦  CUDA Fortran
◦  CUDA
◦  OpenACC

  Performance and portability
◦  Intel SandyBridge
◦  Intel Phi
◦  nVidia GPU 2070Q

5

3.7x

  Apples-to-apples comparisons are hard
  Our methodology
◦  Socket-to-socket performance
◦  Like generations of HW (as closely as possible)
◦  Best (optimized) implementations
◦  Multiple programming models

  2070q initially 6.5x Intel SNB and 3.25x Intel Phi
  After optimization this drops to 2.1x and parity
  Optimizations for Xeon Phi help SNB and vice versa
  Optimized performance much closer than expected
  OpenACC performance lags due to use of shared

memory
  Challenging to get good Phi performance

  Significant potential to improve many-core
performance

  Improvement Cycle
◦  Identify poorly performing code
  i.e. poor vectorization
◦  Restructure code
  vectorize
  Benefits both traditional and accelerator
◦  Repeat

  Automatic performance identification
◦  Barcelona Supercomputer Center (BSC)
◦  Polytechnic University of Catalonia (UPC)
◦  H. Servat, J. Labarta, J. Gimenez

  Utilize BSC tools
◦  extrae: trace collection
◦  paraver: visualization client
◦  clustering & folding tools

  Enables very detailed tracing of application
characteristics

  Creates a “performance database”
◦  time in user code
◦  time in MPI
◦  time in OpenMP
◦  hardware counters
◦  etc…

  Browse performance database with Paraver
◦  Timeline visual analysis
◦  Statistical analysis

Dynamical core

Physics wo/radiation
Physics w/radiation CPL,

CLM

  Traces of non-trivial codes can become large
  Need method to reduce data to simplify

analysis
  Automatic performance identification
  Sampled CESM at periodic intervals
  Identified repeating computational bursts

(clusters)
  Create synthetic traces to simplify analysis
  Look for inefficient sections of code

Most expensive computational cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 37.01 74.01 111.02 148.03 185.03
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000
 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
A

PI
_T

O
T_

IN
S

PA
PI

_T
O

T_
IN

S
ra

te
 (i

n
M

ev
en

ts/
s)

Normalized time

Task 22 Thread 1 - Cluster_1.0
Duration = 185.03 ms Counter = 584457.44 Kevents

Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42

Samples (1500)
Curve fitting
Counter rate

Notice drops in Instruction rates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 37.01 74.01 111.02 148.03 185.03
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000
 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
A

PI
_T

O
T_

IN
S

PA
PI

_T
O

T_
IN

S
ra

te
 (i

n
M

ev
en

ts/
s)

Normalized time

Task 22 Thread 1 - Cluster_1.0
Duration = 185.03 ms Counter = 584457.44 Kevents

Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42
Q0 = 1.00
Q1 = 0.42

Samples (1500)
Curve fitting
Counter rate

4 cycles in Cluster 1

A B C

  Group A:
◦  conden: 2.7%
◦  compute_uwshcu: 3.3%
◦  rtrnmc: 1.75%

  Group B:
◦  micro_mg_tend: 1.36% (1.73%)
◦  wetdepa_v2: 2.5%

  Group C:
◦  reftra_sw: 1.71%
◦  spcvmc_sw: 1.21%
◦  vrtqdr_sw 1.43%

Focus effort on
one subroutine

  Consists of a double nested loop
◦  Very long ~400 lines
◦  Unnecessary branches with inhibit vectorization

  Restructuring wetdepa_v2
◦  Break up long loop to simplify vectorization
◦  Promote scalar to vector temporaries
◦  Common expression elimination

Intel Phi (Intel 13.1.1) Intel Sandybridge (Intel 13.1.2)

-O2 -O3 -O3 -fast -O2 -O3 -O3 -fast

orig 42.85 41.24 3.74 3.43 3.32 0.97

mod 6.50 6.61 4.58 1.09 1.12 1.04

9.3 x 3.5x

Significant potential for reducing execution time !

Increase in code vectorization

Reduction in cycles stalled on resources

  CESM B-case, NE=16, 570 cores
  Yellowstone, Intel (13.1.1) –O2
  Original version:
◦  2.5% total time
◦  492.6 ms

  Modified version:
◦  0.73% total time
◦  121.1 ms

  Actual improvement: 4.07x

  Simple loop was vectorized using aggressive
optimization (-O3 –fast)

  Correctness issues are problematic at high
optimization levels

  Effort to extract wetdepa_v2 much larger then
actual time to optimize

  Code restructuring will be necessary in
general

  Identify “healthy” patient [DG-kernel]
◦  Perform a panel of medical tests [PAPI + extrae]

  Perform panel of medical tests on large
application (CESM/WRF/MPAS/DART)
◦  Look at tests for sections of full application differs from

“healthy” patient
◦  Diagnose performance problems based on groups of

“symptom”
◦  Address identified performance problems

  Generic approach, suitable for all platforms
◦  Intel SNB, Intel Phi, AMD Interlagos, nVidia Kepler, IBM

A2
  Exact nature of tests may differ

  Write code that vectorizes
◦  Don’t do this:

do i=1,pcols
 call sub1()
 call sub2()
 call sub3()
 …

◦  Instead
do i=1,pcols

 srcc(i) = srcs1(i) + srcs2(i) ! convective tend by both processes
 finc(i) = srcs1(i)/(srcc(i) + eps) ! fraction in-cloud
 srcs1(i) = 0._r8

 odds(i) = precabs(i)/max(cldvst(i,k),1.e-5_r8)*scavcoef(i,k)*deltat
 odds(i) = max(min(1._r8,odds(i)),0._r8)

 …

Will never vectorize

  Create/use drivers or unit tests for all new
code
◦  Simplifies development and debugging
◦  Simple performance testing and restructuring of

code
  Unit tests for parameterization
◦  Community Ocean Vertical Mixing (CVMix) Project
◦  CLUBB, UNICORN?

  Dedicated group within CISL to address many-
core challenges

  Significant performance improvement possible
for all architectures

  Equivalent performance for Intel Phi and nVidia
2070Q on DG-Kernel

  Possible to identify poorly performing code for
CESM

  Possible to significantly increase performance
through vectorization: 4 – 9x

  Strategy for continuous improvement of CESM
performance

