

Meteoric metal chemistry in WACCM

Dan Marsh, Atmospheric Chemistry Division, NCAR

Diego Janches, GSFC/NASA

Wuhu Feng, Martyn Chipperfield, John Plane, University of Leeds

Outline

- Model components
 - Meteor input function
 - Ablation model
 - Metal chemistry scheme
- Sodium and iron as dynamical tracers:
 - Mean meridional circulation
 - Stratospheric sudden warming
 - Atmospheric tides
 - Eddy diffusion

Meteoroid Input Function (MIF)

ACCM

An astronomical model of meteoroid fluxes is combined with a chemical ablation model (CABMOD, Vondrak et al. [2008]) to provide a climatology of metal deposition.

Vondrak et al. [2008]

Na and Fe chemistry schemes

VACCM

Metal chemistry is fully interactive with standard 66 species neutral and ion chemistry scheme.

ACCM Whole Atmosphere Community Climate Model

WACCM simulated distribution of Na species

ACCM

NCAR

Whole Atmosphere Community Climate Model Whole Atmosphere Community Climate Model

P-L balanced by meridional advection

АССМ

NCAR

Annual mean vertical integral

ACCM

NCAR

Whole Atmosphere Community Climate Model

24 January 2009 major stratospheric sudden warming

Polar cap averages of T, Na column, Na flux

CCM

• Strat. warming leads to mesospheric cooling

NCAR

- Mesosphere then warms due to convergence and downwelling over pole
- Na over cap increase by 3x
- Not a repartitioning all Na species increase
- Increase from transport of Na species from lower latitudes

Whole Atmosphere

Community Climate Model

Daily 'snapshots' of sodium ~90km / UT00

Fe vertical density profiles compared to LIDAR

ACCM

Whole Atmosphere Community Climate Model

WACCM

Whole Atmosphere Community Climate Model

Fe at Davis and South Pole

Diurnal (tidal) signatures in Fe at Urbana

ACCM

Sensitivity of Fe peak density to eddy diffusion (Kzz)

Doubling Kzz reduces peak by 33%

Need to constrain Kzz with CO, CO₂, NOx

Outstanding problems

ACCM

- Fe+ overestimated by factor of 100 above peak missing ion transport
- Best match to observations requires different total meteor input:
 - Na: 4.6 t/d, Fe: 2.1 t/d
- Prandtl needs to be set to minimize differences between observed metals, other constituents and temperature
- PMC to low and prevalent GW fluxes in error. Tuning for the stratosphere makes things even worse!

IDPs as a source of bioavailable iron for remote ocean

Summary

- The first global models of meteoric sodium and iron have been developed.
- Metals are excellent tracers for middle/upper atmosphere dynamics.
- Provides a further constraints on parameterization of sources and dissipation of gravity waves which drive both the mean circulation and eddy diffusion.
- So far Fe and Na, next Ca, Si, Mg, and K
- We hope to link meteoric Fe with stratospheric sulphate aerosols for the production of bioavailable Fe.

Thank you

NCAR is sponsored by the National Science Foundation