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Why models behave so differently? 
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e.g., Ecosystem C stock 

Traceability to diagnose model differences 



Common properties of terrestrial C cycle 

1. Photosynthesis is the primary 
carbon influx pathway; 

2. Compartmentalization of C 
pools 

3. C partitioning and transfer 
among pools; 

4. donor-pool dominated carbon 
transfer; 

5. first-order linear transfer from 
the donor pool. 

Luo & Weng 2011 TREE 



Model representation of ecosystem carbon cycle 
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Variations among models: 

Diagram of C process of CABLE. 
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According to equation (1), when an ecosystem at steady state, the steady-state ecosystem carbon pool size 
(i.e., ecosystem carbon storage capacity; Xss) is:  

(1) 

(2) 

where τE' represents the baseline residence times of different carbon pools which are determined by the 
partitioning and transfer coefficients in equation 1 as: 

BACE
1' )( −=τ

The actual residence time (τE) of an ecosystem in the equation 2 is modified from τE' by the environmental 
scalar (ξ) as: 

'1
EE τξτ −=

For litter and soil carbon pools,  ξ usually is calculated from temperature ξT and water ξW as: 

WTξξξ =

(3) 

(4) 

(5) 

The “traceability” of terrestrial carbon cycle is mathematically solved as: 

Xia et al. 2013 Global Change Biol. 



A traceability framework for terrestrial C cycle 

Climate forcing 

Precipitation Temperature 

Preset Residence times 

Soil texture Litter lignin fraction 

Environmental space 

Baseline 
residence times 
of carbon pools 

Environmental 
scalars linking 
environmental and 
carbon spaces 

Determinants of ecosystem 
carbon influx and actual 
residence time on carbon 
storage capacity.  
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Xia et al. 2013 Global Change Biol. 





Differential determinants on carbon storage capacity among biomes  

Based on spin-up results from CABLE with 1990 forcings. 
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Xia et al. 2013 Global Change Biol. 

Application 1: Inter-biome differences in CABLE 



Differential determinants on carbon storage capacity among biomes  

Based on spin-up results from CABLE with 1990 forcings. 
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Long τE but 
low NPP. 

High NPP but 
short τE. 

Application 1: Inter-biome differences in CABLE 

Xia et al. 2013 Global Change Biol. 



Modification of environmental scalars on baseline carbon residence times 
Application 1: Inter-biome differences in CABLE 

Xia et al. 2013 Global Change Biol. 



Modification of environmental scalars on baseline carbon 
residence times 

Tundra: 
Moderate τE’ but 
very long τE. 

Xia et al. 2013 Global Change Biol. 

Application 1: Inter-biome differences in CABLE 



Cropland is excluded in this study. Input forcing in 1990. 

 
Temperature and water scalars link environmental space (air temperature 

and precipitation) into the C space. 
 

Xia et al. 2013 Global Change Biol. 

Application 1: Inter-biome differences in CABLE 



• In CABLE model, the differences in environmental scalars among biomes are more determined 
by the temperature scalar. 

• The environmental limitation on τE’ is largest in Tundra and needleleaf forests. 

 
Temperature and water scalars link environmental space (air temperature 

and precipitation) into the C space. 
 

Xia et al. 2013 Global Change Biol. 

Application 1: Inter-biome differences in CABLE 
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Application 2: Inter-model difference between CABLE and CLM-CASA’ 
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Application 2: Inter-model difference between CABLE and CLM-CASA’ 
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Application 2: Inter-model difference between CABLE and CLM-CASA’ 



Temperature and water scalars 
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Application 2: Inter-model difference between CABLE and CLM-CASA’ 



CABLE Carbon-Nitrogen-Phosphorus 
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Application 3: Adding nitrogen processes into CABLE 







Working group 

Traceability of transient simulation 



Site name: RHIN 
Location: Harshaw Experimental 
Forest, Wisconsin 
Veg:  Broadleaf Deciduous Forest 
Period: 1998-2008 
CO2 treatment: 543 ppm 

Site name: PHAC 
Location: West of Cheyenne, Wyoming 
Veg:  Grassland 
Period: 2006-2012 
CO2 treatment: 594 ppm 

Site name: NDFF 
Location: Nevada Test Site, Mojave Desert 
Veg:  Desert 
Period: 1997-2008 
CO2 treatment: 507 ppm 

Site name: KSCO 
Location: Cape 
Canaveral, Florida 
Veg:  Broadleaf 
Evergreen Forest 
Period: 1996-2006 
CO2 treatment: 673 ppm 

FACE model-data intercomparison project 







Summary 

• The carbon cycle can be decomposed into a few 
traceable components.  
 

• Traceability of land models is important to 
improve our understanding of the different 
behaviors among models; 
 

• The traceability framework is a diagnostics tool 
with wide applications for global carbon cycle 
modeling  
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