The MPAS-Ocean Progress Report

Mark Petersen

and the MPAS-Ocean development team

Los Alamos National Laboratory

UNCLASSIFIED

MPAS-Ocean: Progress since June 2013

- Regular, coordinated MPAS releases every six months:
 - Release 1.0 in June 2013, 2.0 in December 2013
- First MPAS-Ocean publication appeared September 2013

Major improvements in release 3.0, planned for July 2014

- Physical parameterizations:
 - GM
 - KPP
- Code infrastructure:
 - Analysis mode
 - more flexible i/o capability
 - major data structure revisions
- Modeling capability:
 - ALE vertical coordinate, with validation

MPAS-Ocean 3.0: GM eddy parameterization

- GM fully implemented
- Bolus (eddy-induced) streamfunction solved with boundary value problem in each column, following Ferrari et al 2010.
- Formulated for general coordinate system (i.e. tilted layers).
- Validation using analytic solution
- Currently testing in idealized and real-world configurations

0

Idealized test, vs analytic solution

Global real-world simulations

MPAS-Ocean 3.0: KPP vertical mixing parameterization

- CVMix is incorporated into MPAS-Ocean
- We have connected to background, convective, shear-based mixing, and KPP modules
- Comparison between MPAS-Ocean and CVMix versions of Richardson Number-based mixing underway.
- We are currently working with NCAR and GFDL to develop verification and validation test cases.

Vertical Diffusion, m²/s, log scale

MPAS-Ocean 3.0: Analysis Mode

Problem: Our ability to produce data is outstripping our ability to manipulate and analyze this data.

Solution: Analysis tools fully integrated into the model, that may be applied in-situ or post-processing

- Analysis members written within MPAS, using native variables, operators, parallel domain decomposition, i/o
- Analysis is fully parallelized, scales with code.
- Each analysis member is a separate module, begun from a template.
- Easy for MPAS users to contribute analysis tools back to released code through repository tools, using pull request and review.

MPAS-Ocean 3.0: infrastructure and i/o improvements

- Multiple i/o streams
 - Each i/o stream reads or writes a sequence of files.
 - New streams are created at build-time.
 - User may specify the frequency and variables for each stream at run-time
- Major data structure revisions
 - Avoid name-space conflicts for multiple MPAS cores in coupled models.
 - Allocate memory for variables only when needed

See talk by Doug Jacobsen 9:20 Thursday Software Eng.

Arbitrary Lagrangian-Eulerian (ALE) Vertical Coordinate

 Series of test cases quantify spurious mixing, compare to MOM, POP, MITgcm

y, km

Work underway:

- Lagrangian particles
- Eliassen-Palm flux tensor diagnostics
- Paraview Catalyst in-situ images and analysis

In-Situ Lagrangian Particle Tracking

- Purpose: Compute regional patterns of fluid mixing, i.e. diffusivity tensor
- HPC implementation
 - Extensible particle data type
 - Linked list for efficient inter-processor communication

n

- Particle tracking modes
 - ARGO mode
 - Passive particles
 - Fixed z-level / index space
 - Buoyancy surface following
- Visualization
 - Offline: Paraview
 - Online: Paraview Catalyst

See poster OMWG-18 by Phillip Wolfram

Eliassen & Palm flux tensor diagnostics

We are using the Eliassen & Palm flux tensor (Young 2012, Maddison and Marshall 2013) to diagnose

- energy,
- momentum and
- Ertel potential vorticity

See poster OMWG-14 by Juan Saenz

fluxes between meso-scale eddies and the residual mean flow. We are using these diagnostics to inform and develop scale-aware mesoscale eddy parameterizations.

Paraview Catalyst in-situ image creator and analysis

- Run-time image generation using Paraview
- Link to Paraview libraries during compile time (optional)
- Image parameters specified in python script in run directory
- All Paraview analysis tools are available to run-time scripts
- Cinema: interactive data exploration from web browser

Work underway:

- Lagrangian particles
- Eliassen-Palm flux tensor diagnostics
- Paraview Catalyst in-situ images and analysis

Additional goals:

- CORE-forced simulations
- Improve performance metrics and tracking
- Port POP biogeochemistry to MPAS-Ocean
- Higher-order advection: Characteristic Discontinuous Galerkin
- Recast MPAS-O to solve residual-mean velocity as prognostic variable
- Publish POP/MPAS comparison with SOMA test case
- Publish verification study of ALE vertical coordinate