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MPAS-Ocean: Progress since June 2013

= Regular, coordinated MPAS releases every six months:
Release 1.0 in June 2013, 2.0 in December 2013
m  First MPAS-Ocean publication appeared September 2013

Major improvements in release 3.0, planned for July 2014

= Physical parameterizations:
GM
KPP

= Code infrastructure:
Analysis mode
more flexible i/o capability
major data structure revisions

= Modeling capabillity:
ALE vertical coordinate, with validation
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MPAS-Ocean 3.0: GM eddy parameterization

= GM fully implemented

m  Bolus (eddy-induced) streamfunction solved with boundary value
problem in each column, following Ferrari et al 2010.

s Formulated for general coordinate system (i.e. tilted layers).

= Validation using analytic solution

m  Currently testing in idealized and real-world configurations

Idealized test, vs analytic solution
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MPAS-Ocean 3.0: KPP vertical mixing parameterization

s CVMix is incorporated into MPAS-Ocean

= We have connected to background, convective, shear-based mixing,
and KPP modules

s  Comparison between MPAS-Ocean and CVMix versions of
Richardson Number-based mixing underway.

= We are currently working with NCAR and GFDL to develop verification
and validation test cases.

Vertical Diffusion, m?/s, log scale
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MPAS-Ocean 3.0: Analysis Mode

Problem: Our ability to produce data is outstripping our ability to
manipulate and analyze this data.

Solution: Analysis tools fully integrated into the model, that may be
applied in-situ or post-processing

= Analysis members written within MPAS, using native variables,
operators, parallel domain decomposition, i/o

= Analysis is fully parallelized, scales with code.
s Each analysis member is a separate module, begun from a template.

m Easy for MPAS users to contribute analysis tools back to released
code through repository tools, using pull request and review.
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simulated years per wall clock day (SYPD)

MPAS-Ocean 3.0: infrastructure and i/o improvements

= Multiple i/o streams

Each i/o stream reads or writes a sequence of files.

New streams are created at build-time.

User may specify the frequency and variables for each stream at run-time
= Major data structure revisions

Avoid name-space conflicts for multiple MPAS cores in coupled models.

Allocate memory for variables only when needed

Strong scaling of MPAS-Ocean on mustang
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Arbitrary Lagrangian-Eulerian (ALE) Vertical Coordinate

m Series of test cases quantify spurious mixing, compare to MOM, POP,

MITgcm
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Plans for next 12 months

Work underway:
= Lagrangian particles
m Eliassen-Palm flux tensor diagnostics

m Paraview Catalyst in-situ images and analysis
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In-Situ Lagrangian Particle Tracking

= Purpose: Compute regional patterns of fluid mixing, i.e. diffusivity tensor
= HPC implementation

= Extensible particle data type

= Linked list for efficient inter-processor communication
= Particle tracking modes

= ARGO mode
= Passive particles
* Fixed z-level / index space

= Buoyancy surface following
= Visualization
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= Offline: Paraview
= Online: Paraview Catalyst



Eliassen & Palm flux tensor diagnostics

We are using the Eliassen & Palm flux tensor (Young 2012, Maddison and

Marshall 2013) to diagnhose
= energy, See poster OMWG-14

= momentum and by Juan Saenz
= Ertel potential vorticity

fluxes between meso-scale eddies and the residual mean flow.
We are using these diagnostics to inform and develop scale-aware meso-
scale eddy parameterizations.
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Paraview Catalyst in-situ image creator and analysis

Run-time image generation using Paraview

Link to Paraview libraries during compile time (optional)
Image parameters specified in python script in run directory
All Paraview analysis tools are available to run-time scripts

Cinema: interactive data exploration from web browser
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Plans for next 12 months

Work underway:
= Lagrangian particles
m Eliassen-Palm flux tensor diagnostics

m Paraview Catalyst in-situ images and analysis

Additional goals:

=  CORE-forced simulations

= Improve performance metrics and tracking

m  Port POP biogeochemistry to MPAS-Ocean

s Higher-order advection: Characteristic Discontinuous Galerkin

s  Recast MPAS-O to solve residual-mean velocity as prognostic variable
m  Publish POP/MPAS comparison with SOMA test case

= Publish verification study of ALE vertical coordinate
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