Recent Arctic sea ice loss from the perspective of a Rapid Ice Loss Event (RILE) using CMIP5

Paul J. Hezel^{1,2} Hugues Goosse¹, Cecilia Bitz³, François Massonnet¹, Thierry Fichefet¹

> ¹TECLIM, Université catholique de Louvain, Belgium ²Geophysical Institute, Bjerknes Centre for Climate Research, University of Bergen, Norway ³Atmospheric Sciences, Univ of Washington, US

> > 19th CESM Workshop 2014 18 June 2014

> > > paul.hezel@uib.no

Holland, Bitz, Tremblay, 2006, GRL

- Rapid Ice Loss Events (RILEs)
 - Abrupt September sea ice extent reductions characteristic in CCSM3 ensemble
 - Short term events: \sim 5 years
 - Similar events in CMIP3 models

CMIP5 September Arctic Sea Ice Trends

Stroeve et al, 2012 GRL

Rapid ice loss events (RILEs) in CMIP5

- How prevalent are RILE events in CMIP5?
 - Probability
 - Absolute timing
 - Timing related to ice-free condition threshold
- If nature is currently in a RILE
 - Can we predict short term sea ice trajectory?

RILE definition

- Use derivative (slope) of 5-yr running mean Sept. SIE
- Determine 3σ event threshold using detrended slopes for 1850-1990
- Find all slopes >3 σ in derivative of 5-yr running mean SIE timeseries
- Bound events at 1/3 of threshold (1 σ)

Time series with 1 RILE

RILE events summary

- 84 ensemble members.
 73 have at least 1 RILE.
- 227 RILE events.
- Mean threshold:
 -0.34 x10⁶ km²/yr
- 3/4 members increase variance of instantaneous trends by >20%;
- 3/8 members increase variance by >50%

Probability of RILE in 10 year period

Probability of RILE in 10 year period

• Increasing likelihood as closer to ice-free conditions

RILE occurrence in CMIP5

- RILEs not uncommon in CMIP5 after 1990
- Increasing probability after 1980 or as approach ice free conditions
- Recent SIE observations independently confirm RILE -
- Arctic could plausibly be considered to be in a RILE
- What is expected about short-term SIE after a RILE?

Compare trend (prediction) to time series

Compare trend (prediction) to time series

TREND from RILE (start to end) after 10 years underpredicts SIE compared to SIE time series

Compare trend (prediction) to time series

Trend from 15 yrs prior to RILE agrees with simulated SIE (on average)

After a CMIP5 RILE

- Linear trends from only RILE period drastically **underpredict** SIE at all time horizons
- 15-year trend to end of RILE on average predict SIE up to ~20 years (slight overpredict after 25+ years) Caveat: RMSE is large!

Outlook for observations

• Trends from observations for two periods

Outlook for observations

• Dashed lines are uncertainties associated with determining trend itself (i.e. Santer 2008)

Outlook for observations

Conclusions

- CMIP5 shows a RILE is entirely possib`le in the current period, and increasingly likely into the future
- Observations independently show a RILE
- 15-year trend to end of RILE on average predict SIE up to ~20 years (slight overpredict after 25+ years) – but uncertainties may make such predictions less useful
- Linear trends from only RILE period drastically underpredict SIE at all time horizons – more confidence that SIE will not cross ice-free conditions before 2026

CCSM4

CCSM4

CESM1-CAM5

NorESM1-M

Prediction from RILE trend only

Prediction from 15 years through end of RILE

