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Climate impacts/damages closely linked to extreme (low probability) events

source: AP/Seth Perlman

source: NOAA
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Can we formulate a self-consistent Earth system modeling approach that captures 
the  maximum likelihood (climate mean) and tail area behavior (climate extremes)?

Earth system models typically geared toward estimating the most likely outcome 
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Uncertainty Quantification provides an important link between Earth-system 
modeling and Integrated Assessment, Risk Analysis and Impacts Analysis

Questions: 
1. What uncertainties are important (decision-relevant)?	

2. What drives the uncertainties?	

3. How do the uncertainties affect climate metrics related to impacts?



Tradeoff between model realism and computational tractability

- Integrated Assessment requires probabilistic predictions with full treatment of uncertainty	

- How do we achieve this given the tradeoffs between realism and tractability?
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Example: Computational trade-off in CESM
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!
Computational demand 
increases with resolution	

!
CESM skill appears 
relatively insensitive to 
resolution for some key 
climate variables	
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!

Low-resolution CESM may potentially provide “sweet spot” to Computational Tradeoff	

- Mechanistically sound	

- Tractable enough to perform large number of simulations required for UQ and IA
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!
 Uncertainty Quantification to inform decisions	


- different from usual UQ methods used in model development	

- e.g. parameter estimation	


- focus on quantifying uncertainty surrounding decision-relevant metrics	

- applications: regional-scale temperature, precipitation, and sea-level rise variations	

!
!

CESM ensemble of hindcasts and projections	

- low resolution version (T31, gx3v7) Community Earth System Model (CESM)	

- spin-up the fully coupled model for 5000 years	


- approximate dynamic equilibrium of the deep ocean	

- branch off transient simulations every 100 years from the equilibrium run	


- forced with historic and projected forcings from the RCP8.5 scenario (1850-2100)	

!
!
- currently 50 members (~50 TeraBytes of monthly and daily output)	


- monthly:  full ocean/atmosphere fields	

- daily: max/min/average surface temperature, precipitation, relative humidity	


!

Connecting CESM to integrated assessment and impacts/risk analysis
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CESM ensemble samples the internal variability of the fully-coupled ocean atmosphere system	

-  enables a self-consistent method for analyzing the effect of unforced variability	


-  features consistency between atmosphere/ocean states	

-  enables analysis of multiple spatial and temporal scales	


Our ensemble focuses solely on internal variability (initial conditions uncertainty)	

•  Silent on other uncertainties:	


•  parametric uncertainties, forcing scenarios, different model structures
7

Unforced Equilibration	

(5000 year spin up)	


Hindcast	

1850-2005	


RCP8.5 projection	

2005-2100	


dt=100 years	

branch point	


Hindcast	

1850-2005	


RCP8.5 projection	

2005-2100	


branch point	




N. Hemisphere Summer (JJA) Temperature
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N. Hemisphere Summer (JJA) Temperature

Mean RMSE = 0.15 C

Mean RMSE = 0.35 C

Mean RMSE = 0.93 C

CESM Ensemble (50 members)
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N. Hemisphere Summer (JJA) Temperature

Mean RMSE = 0.15 C

Mean RMSE = 0.35 C

Mean RMSE = 0.93 C

CESM Ensemble (50 members)

Mean RMSE = 0.14 C

Mean RMSE = 0.35 C

Mean RMSE = 0.89 C

CMIP5 Ensemble (~40 members)
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N. Hemisphere Summer (JJA) Precipitation

Mean RMSE = 1.5 %

Mean RMSE = 3.4 %

Mean RMSE = 17 %

CESM Ensemble (50 members)

Mean RMSE = 1.5 %

Mean RMSE = 3.2 %

Mean RMSE = 18 %

CMIP5 Ensemble (~40 members)



Evaluating CESM ensemble skill

Midwestern US Monthly Summer Temperature (1961-2010)
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- CESM overconfident	

- CMIP5 underconfident
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!
• Can we leverage CESM’s flexibility to analyze skill in simulating tail area events?	


• particularly at high-temporal resolution (e.g. daily scales)?	

• At what scales does the model show skill?	

• What are the advantages/disadvantages of this ensemble approach?

What about the tails?	
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Distributions of summer block 
maxima of daily temperature 
(1961-2010)	

!
Black —> Gridded Observations	

Gray —> CESM ensemble

Low-resolution CESM under-estimates the tails, but captures the shape and scale	

	
 	
 - Bias correction may be useful for regional-scale analysis of extremes	


50 Grid Points	
 10 Grid Points	
 1 Grid Points	
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What is the effect of data/model resolution?

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

Daily Summer Temperature Anomaly, 1956−2005

Celsius

lo
g(

1−
F(

x)
)

0.
02

0.
1

1 CESM Low Res (4 degrees)
CESM High Res (1 degree)
Weather Station (point location)

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

● ● ●●●●●●● ●●●●●●●●●● ●●●●●●●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

Daily Summer Precipitation, 1956−2005 

Millimeters

lo
g(

1−
F(

x)
)

0.
02

0.
1

1 CESM Low Res (4 degrees)
CESM High Res (1 degree)
Weather Station (point location)

● ● ●●●●●●● ●●●●●●●●●● ●●●●●●●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●
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precipitation (right) at a single location (Springfield Illinois)
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Low resolution CESM shows skill for temperature, but not for precipitation



13

Relevance to SDWG
Fostering dialogue

Needs for CESM development 

Relevant CESM simulations

New CESM linkage code 

Work represents application of large ensemble approach with 
emphasis on decision-relevant climate metrics and uncertainties 

Relationships between model resolution and skill	

	
 - particularly for extremes

Ensemble output is readily adaptable to impacts analysis	

	
 —> Next steps:  sea-level rise patterns, agricultural damages

Focusing the science questions on end-user needs	

	
 - Ensemble targeted at decision-relevant metrics and uncertainties



Conclusions
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We utilize CESM to characterize initial conditions (or internal variability) 
uncertainty using a self-consistent modeling methodology 

- features fully-coupled spin-up and hindcasts/projections using the RCP8.5 scenario	

- accounts for ocean state variability (important for decadal scale predictability)	


!
!
!
!
Key Results 

- The low resolution CESM shows skill in simulating interannual variability of key 
climate metrics across multiple spatial scales	


- Ensemble range at regional scales is consistent with CMIP5 	

- The ensemble under-estimates the magnitude of extremes (tail events), but 

captures the general features of observed distributions of temperature and 
precipitation
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Does CESM capture the dynamics controlling regional climate?

Power spectrum of monthly SST anomalies in the Nino3 Region
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Does CESM capture the dynamics controlling regional climate?

Power spectrum of monthly SST anomalies in the Nino3 Region

Low resolution CESM simulates realistic ENSO variability 	

- ENSO teleconnections important for remotely controlling regional-scale 
precipitation and temperature variability
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Sea-level Rise in CESM for the RCP8.5 scenario
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CESM ensemble provides a useful tool for analyzing spatial patterns of sea-level rise and 
variability due to dynamic and steric effects	

!

- Includes internal variability of the full-ocean

Ensemble Mean (2081-2099) Ensemble Mean (2081-2099)
Sriver et al., In Preparation	




Sea-level Rise in CESM for the RCP8.5 scenario
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CESM shows large spatial variations in Steric+Dynamic SLR.

Ensemble Mean (2081-2099)



Sea-level Rise in CESM for the RCP8.5 scenario
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CESM shows large spatial variations in Steric+Dynamic SLR.

Ensemble Mean (2081-2099)

Ensemble Standard Deviation (2081-2099)

Ensemble Standard Deviation (2099)

• Internal model variability leads to relatively large SLR annual and decadal variability



Spatial Patterns in SLR Projections
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Sriver et al., In Preparation	
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• Regional projections can differ substantially from the global mean	

• Small underestimations of SLR uncertainties can result in major 

downward biases of local flooding risks (Sriver et al., 2012 - Clim Change)	

• Global mean projections of steric SLR are inadequate for regional/local 

risk and impacts assessments
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