Overview of activities of the Application Scalability and Performance (ASAP) group

John Dennis (dennis@ucar.edu)

Systems Laboratory

& Information

nputati

Application Scalability and Performance Group

• CISL Research group with 3 focuses

- Scalability Applications (Scale)
- Accelerators and Micro-processor performance (Accel)
- Workflow and I/O (WIO)
- Staff:
 - Allison Baker (WIO, Scale)
 - John Dennis (Accel, Scale, WIO)
 - Ben Jamroz (Accel, Scale)
 - Youngsung Kim (Accel)
 - Sheri Mickelson (WIO)
 - Kevin Paul (WIO)
 - Srinath Vadlamani (Accel)
 - Haiying Xu (WIO)

Outline

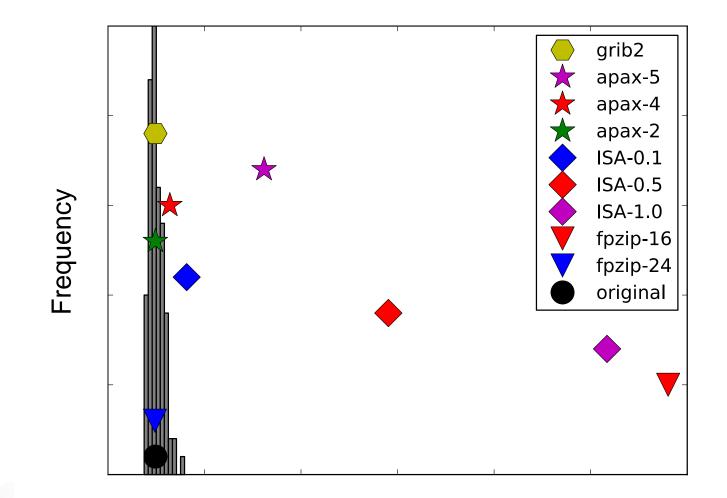
- Data-compression
- CESM on Xeon Phi
- Performance Enhancement Methodology
- Conclusions

aboratory

Systems

Information

Data compression


Evaluate X in the context of an ensemble:

NEW

- 101 one-year CESM runs
- Double-precision perturbation in initial ATM temperature
- Creates an "accepted" distribution
- 1-deg atmosphere model: 170 variables

Is the difference "climate-changing ... CESM SEWG meeting

RMSZ ensemble test

computational & Information Systems Laboratory

NCAR

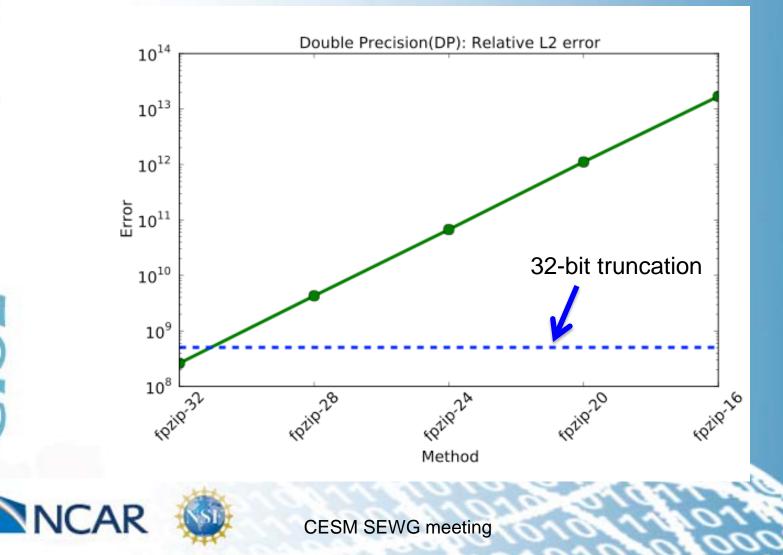
Root Mean Square Z-score

CESM SEWG meeting

CAM Data Compression

For each variable (170), choose highest compression rate (CR) such that:

- RMSZ-ensemble test 🖌
- Max-error ensemble test
- RMSZ-bias test 🗸
- Correlation coefficient test


-		0100	101 - 10	1991	
	worst	.86	.77	.68	.80
	best	.03	.20	.02	.06
	average	.37	.42	.18	.29
	CR	GRIB2	ISABELA	fpzip	ΑΡΑΧ

POP Data Compression

- How to create an ensemble (?)
- Derived vector quantities: Temperature tendency
- Compare internal calculation with reconstructed
 - 64-bit output
 - 32-bit output
 - Compressed with fpzip

Relative L2 error: Temperature tendency

Data-Compression: Ongoing work:

- Evaluating new compression algorithms
 - I. Horenko, W. Sawyer (CSCS) temporal compression
 - K. Sato, N. Sasaki, et al (Titech) wavelet based method
 - L. Gomez (ANL), preconditioner based
 - P. Lindstrom (LLNL), revised fpzip
 - S. Liu, X. Huang, et al (Tsinghua U.)

- Blind evaluation of data-compression
 - Large ensemble project: 30 member ensemble
 - (www.cesm.ucar.edu/experiments/cesm1.1/LE/)
 - Add 3 additional members: 1-2 of which have been compressed
 - Can climate scientists tell which member was compressed?

Overview

- Climate model verification
- Data compression
- Workflow
- Many-core & CESM
- Performance enhancement methodology
- KGEN

aboratory

Systems

& Information

Current Status of CESM on Phi

- Workaround provided for Intel compiler bug
 - -mP2OPT_hpo_matrix_opt_framework=0
 - Fixed in Intel compiler 14 update 3
- Verification Status:
 - CAM5, ideal physics, ne16 (2 deg) 3 members passed
 - CAM5, full physics, ne30 (1 deg) 1 member passed
 - 6/122 global mean tests failed 4% outside range
 - Used ~4500 core hours

Current Status of CESM on Xeon Phi (con't)

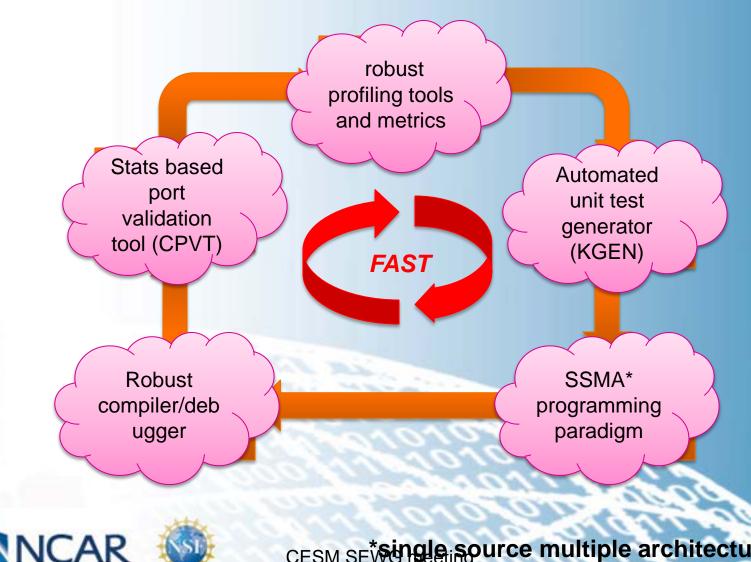
- Requires small number of changes to CESM code based to address Xeon Phi compiler
- Upcoming CESM development tag
 - Stampede (TACC)
 - Babbage (NERSC)
 - Pronghorn (NCAR)

CESM performance on Phi

• Configuration:

aboratory

Systems


& Information

putati

- CESM, full physics, ne16 (2 degree)
- Native mode
- 2 nodes of Stampede
 - Host: 4 sockets, 8 cores per socket
 - Phi: 2 KNC cards
- Simulation rate (without I/O): 29%

Performance Enhancement Methodology: a virtuous cycle for code improvement

14

Identifying optimization targets with Extrae and Paraver.

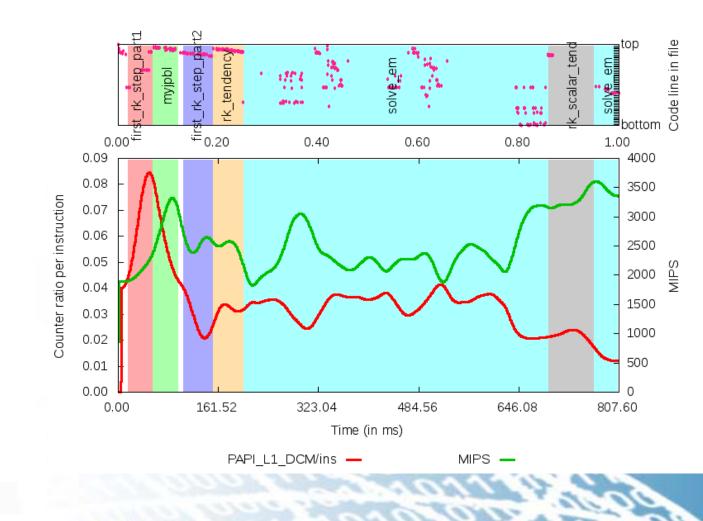
Extrae tracing tool developed at Barcelona Supercomputer Center

- -H. Servat, H. Labart, J. Gimenez
- -Automatic performance identification is a BSC research project.
- -Produces a time series of communication & hardware counter events.

Paraver is the visualizer that also performs statistical analysis.

-There are clustering techniques which uses a folding concept plus the research identification process to create "synthetic" traces with fewer samples.

Has been applied to multiple codes


- CESM

aboratory

Information

- -WRF
- PORT: standalone RRTMG driver
- HOMME: dynamical core of CAM-SE

Performance Analysis tools: Antarctic Mesoscale Prediction System (AMPS)

Appl * Task * Thread * - Group_0 - Cluster_1

VCAR

KGEN

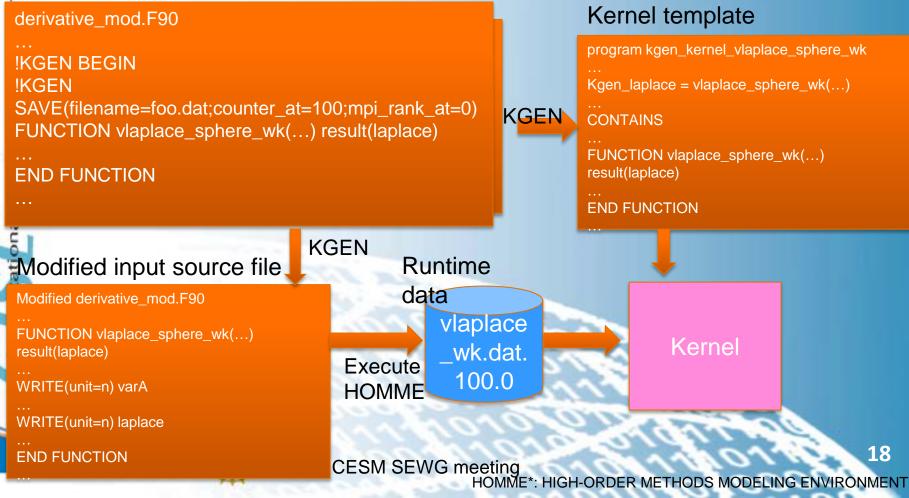
- Extracts a Fortran subprogram by placing "OpenMP-like" directives.
 - EX: ^{IKGEN BEGIN} SUBROUTINE sub

Systems Laboratory

& Information

nput

END SUBROUTINE sub


- Scans source files to collect parameters, hierarchy of derived types, and stack of subprogram calls, and then generates following files:
 - 1. Kernel template file
 - 2. Modified input source file for data generation

KGEN Usage Example

HOMME* Source

Laboratory

Conclusions:

- Impact of lossy compression not distinguishable from natural variability
- CESM data compressed by as much as **5:1**
- Blind evaluation of data-compression through large ensemble project
- CESM port to Xeon Phi verified
- CESM on Xeon Phi: 29% of Sandybridge
- Developed a Performance Enhancement methodology
 - A.H. Baker, et al

Laboratory

Systems

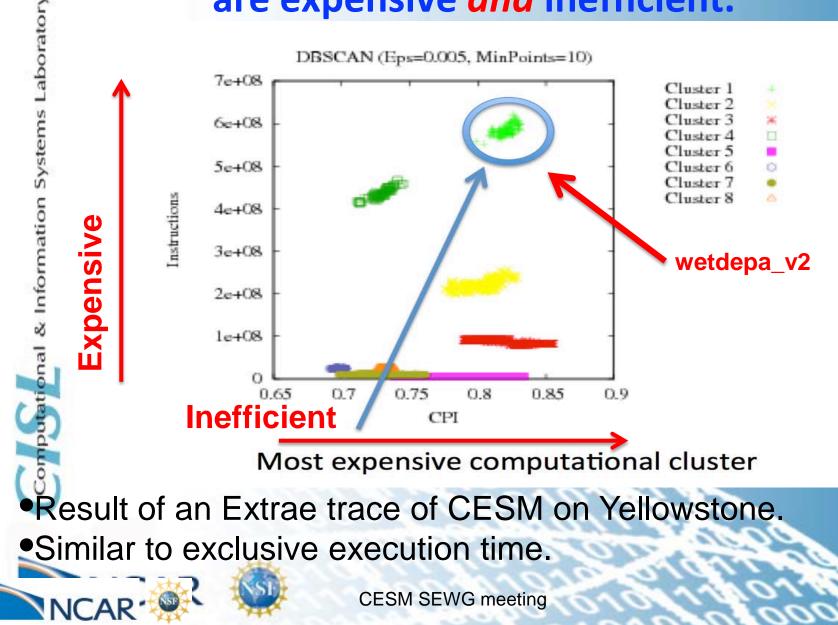
onal & Information

uput

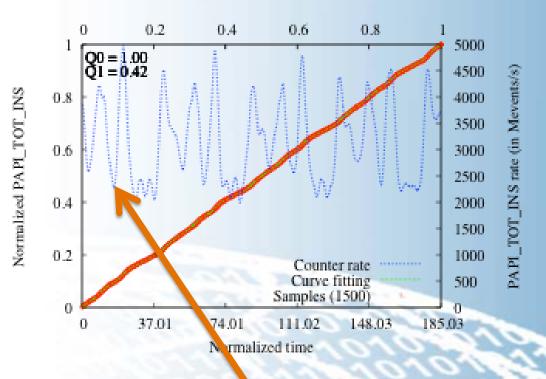
"A Methodology for Evaluating the Impact of Data Compression on Climate Simulation Data."

Proc. of the 23rd International ACM Symposium on High Performance Parallel and Distributed Computing (HPDC14), Vancouver, CA, June 2014 (*to appear*).

Questions?

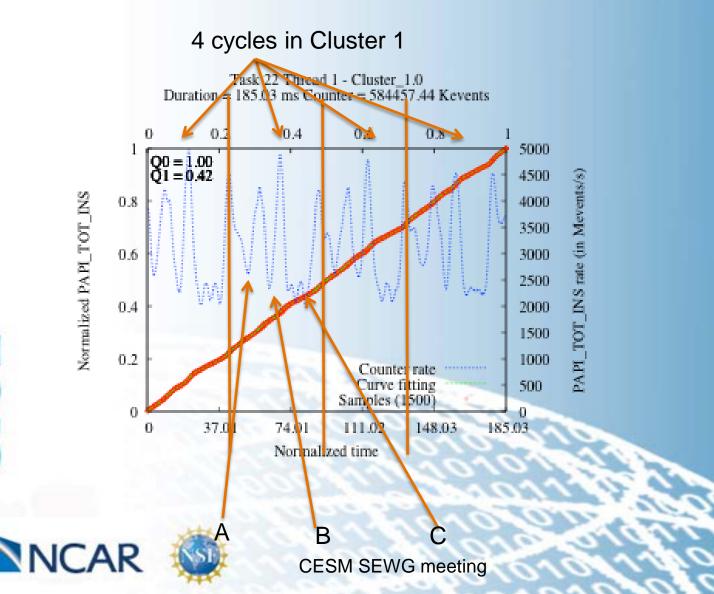

John Dennis (dennis@ucar.edu)

Computational & Information Systems Laboratory


BSC tools helped us to find high priority sections that are expensive *and* inefficient.

21

Total Instructions: Cluster 1


Task 22 Thread 1 - Cluster_1.0 Duration = 185.03 ms Counter = 584457.44 Kevents

Notice drops in Instruction rates CESM SEWG meeting

NCAR

Total Instructions: Cluster 1

Underperforming subroutines Cluster 1

2.7%

3.3%

1.75%

Group A:

aboratory

& Information

putati

- conden:
- compute_uwshcu:
- rtrnmc:

• Group B:

- micro_mg_tend:
- wetdepa_v2:

Group C:

JCAR

- reftra_sw:
- spcvmc_sw:
- vrtqdr_sw

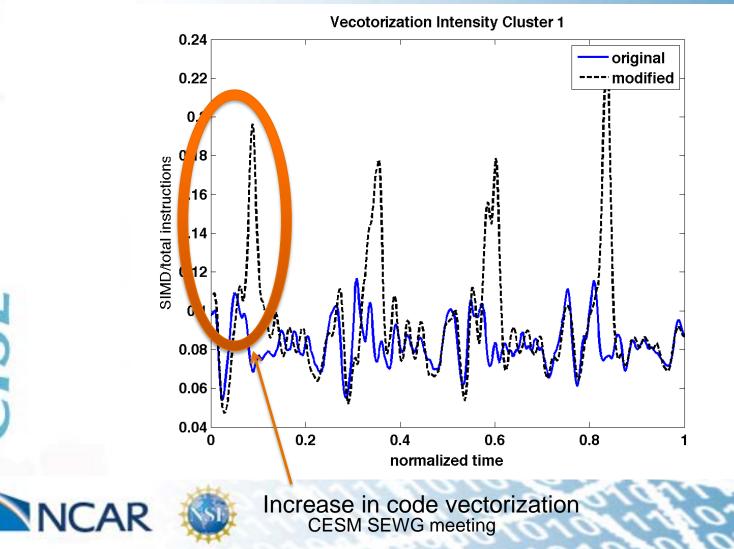
1.36% (1.73%)
2.5% Focus effort on one subroutine
1.71%
1.21%
1.43%

Optimizing (vectorizing) wetdepa_v2

- Consists of a double nested loop
 - Very long ~400 lines
 - Unnecessary branches with inhibit vectorization
- Restructuring wetdepa_v2
 - Break up long loop to simplify vectorization
 - Promote scalar to vector temporaries
 - Common expression elimination

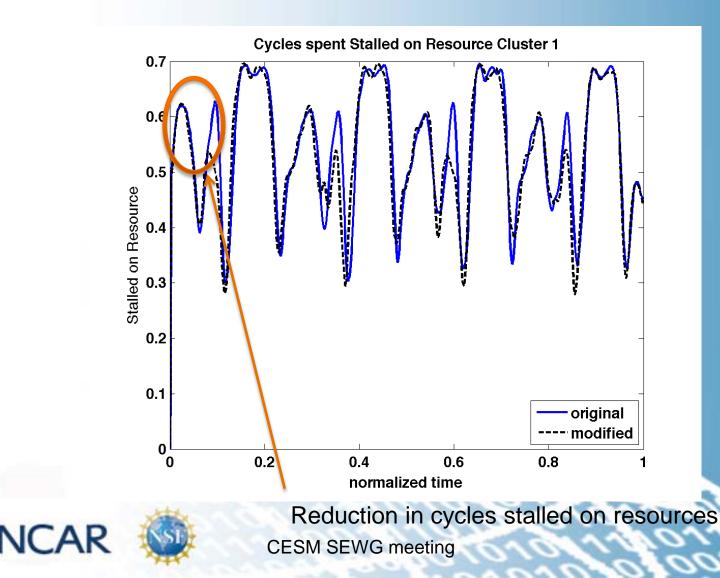
aboratory

& Information


Now use what we've learned from dg_kernel to speed up wetdepa_v2... to get fast and right!

Î	Intel Phi (Intel 13.1.1)			Intel Sandybridge (Intel 13.1.2)		
	-02	-03	-03 -fast	-02	-03	-03 -fast
orig	42.85	41.24	3.74	3.43	3.32	0.97
mod	6.50	6.61	4.58	1.09	1.12	1.04

wetdepa is small only ~600 lines
Restructured branched loops + promoted scalars to vectors.
-O3 fast for original code gave incorrect results
2.5% to 0.7% of code execution time = \$222K savings


Maybe 2x is possible from code refactoring! 26

Vectorization Intensity Cluster #1

27

Stalls on Resources Cluster #1

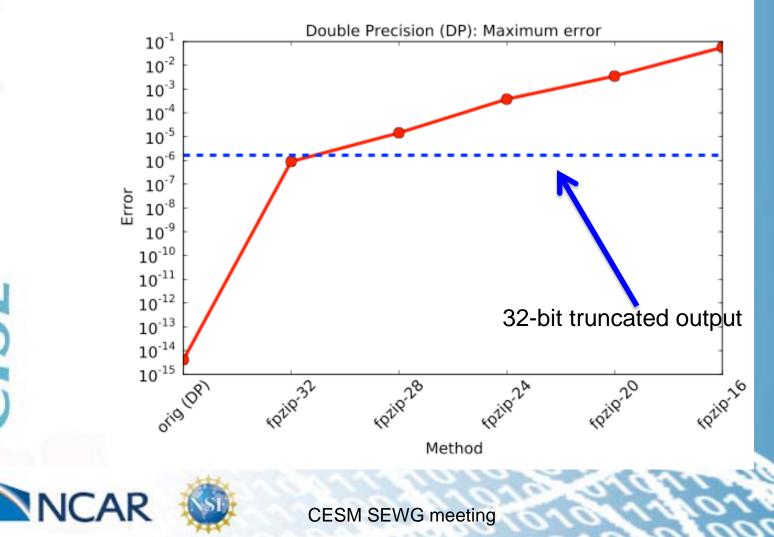
28

CESM/CAM Port-Verification Tool (CPVT)

Create ensemble E, with 101 members

Information

Z-score: compares x_i in ensemble member m to x_i in remaining 100 ensemble members {E\m}:


$$Z_{x_i}^m = \frac{x_i^m - \bar{x}_i^{E \setminus m}}{\sigma_{x_i}^{E \setminus m}}$$

Root mean square Z-score for dataset X of ensemble m:

 RMSZ_X^m

Maximum error: Temperature tendency

