Outline

Prob

What

Interp

Status

Futu

Results

Separating the Physics and Dynamics Grids

Steve Goldhaber

National Center for Atmospheric Research CGD: Atmospheric Modeling & Predictability

June 19, 2014

・ロト ・ 雪 ト ・ ヨ ト

э

Outline	Why	Problem	What	Interp	Status	Future	Results
			Out	line			
•	• Why y	et another	grid?				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- What's the big deal?
- What's going on with interpolation?
- Status
- Initial Results

Outline	Why	Problem	What	Interp	Status	Future	Results
			Out	line			
	• Why y	et another	grid?				

- What's the big deal?
- What's going on with interpolation?
- Status
- Initial Results
- Acknowledgments: Peter Lauritzen, Mark Taylor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Why	Problem	What	Interp	Status	Future	Results
		WI	hy ano	ther gri	d?		

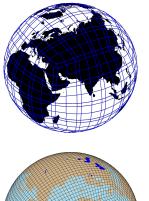
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

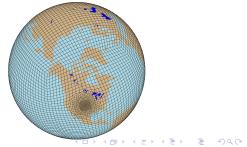
parameterizations work better with constant area columns

Why another grid?

- Physics parameterizations work better with constant area columns
- Uneven grid spacing in cubed-sphere grid



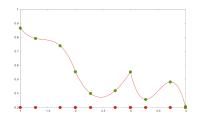
イロト イポト イヨト イヨト



Why another grid?

- Physics parameterizations work better with constant area columns
- Uneven grid spacing in cubed-sphere grid

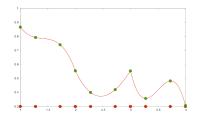
• Even worse grid spacing in regionally-refined grids


Outline	Why	Problem	What	Interp	Status	Future	Results
		So, is	s there	a prob	lem?		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

So, is there a problem?

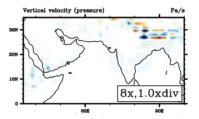
 In CAM-SE, the dynamical solution is continuous across element boundaries but not smooth.



イロト 不得 トイヨト イヨト

So, is there a problem?

- In CAM-SE, the dynamical solution is continuous across element boundaries but not smooth.
- Combined with topography, this introduces noise

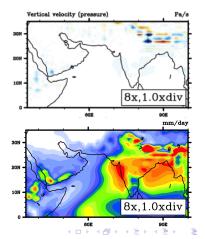

イロト 不得 トイヨト イヨト

Outline	Why	Problem	What	Interp	Status	Future	Results

So, is there a problem?

- In CAM-SE, the dynamical solution is continuous across element boundaries but not smooth.
- Combined with topography, this introduces noise
- 30 year average ⇒ vertical pressure velocity

30 year averages for AMIP run using rough topography and no extra divergence damping



Outline Why Problem What Interp Status Future Results

So, is there a problem?

- In CAM-SE, the dynamical solution is continuous across element boundaries but not smooth.
- Combined with topography, this introduces noise
- 30 year average ⇒ vertical pressure velocity
- 30 year average precipitation rate ⇒

30 year averages for AMIP run using rough topography and no extra divergence damping

Sac

 CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.

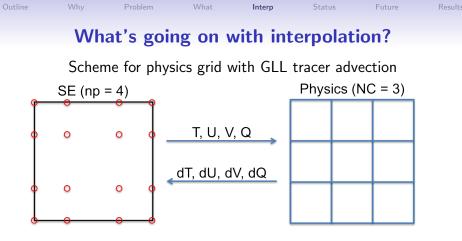
• Breaking this assumption has taken a lot of work

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.

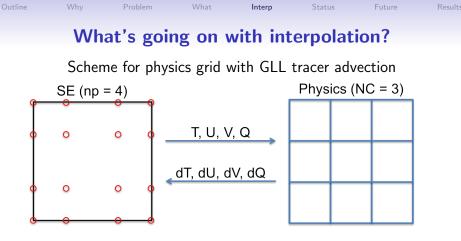
- Breaking this assumption has taken a lot of work
- CAM (branch) now contains a grid object

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.
- Breaking this assumption has taken a lot of work
- CAM (branch) now contains a grid object
 - The grids are set by the dycore during initialization

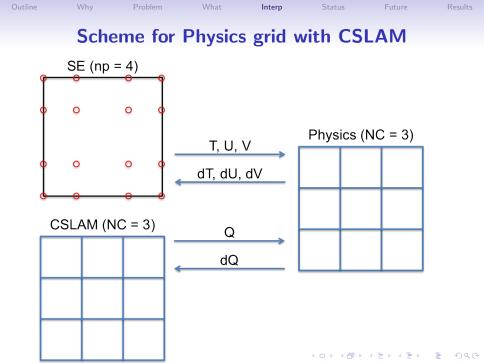
- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.
- Breaking this assumption has taken a lot of work
- CAM (branch) now contains a grid object
 - The grids are set by the dycore during initialization
 - I/O, CAM history, and CAM physics all reference the grid object rather than dycore functions

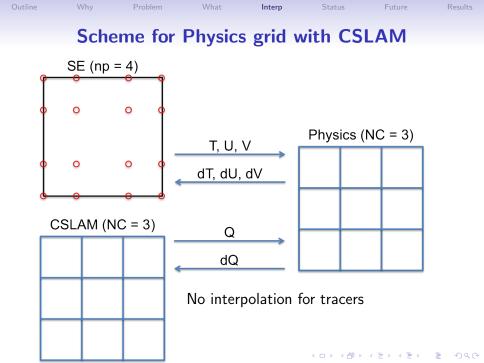

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.
- Breaking this assumption has taken a lot of work
- CAM (branch) now contains a grid object
 - The grids are set by the dycore during initialization
 - I/O, CAM history, and CAM physics all reference the grid object rather than dycore functions
 - The CAM grid object is fully distributed and is the interface between CAM and PIO.

- CAM has always assumed that the physics parameterizations run on the same lat/lon points as the dynamics
- This assumption is also built into all of the input and output (history) infrastructure.
- Breaking this assumption has taken a lot of work
- CAM (branch) now contains a grid object
 - The grids are set by the dycore during initialization
 - I/O, CAM history, and CAM physics all reference the grid object rather than dycore functions
 - The CAM grid object is fully distributed and is the interface between CAM and PIO.
- New horizontal grids for CAM-SE with physics grid (e.g., NE30NP4NC3)


Interp What's going on with interpolation? Scheme for physics grid with GLL tracer advection Physics (NC = 3) SE(np = 4)T, U, V, Q 0 0 dT, dU, dV, dQ 0 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ




• Area average of dynamics state is passed to physics grid. Physics tendencies are passed to dynamics via bi-linear interpolation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Area average of dynamics state is passed to physics grid. Physics tendencies are passed to dynamics via bi-linear interpolation
- Boundary exchange after interpolation from physics to dynamics equalizes SE edge points

• Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch
- Tools exist to create correct initial-data sets (physics data read in on physics grid)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch
- Tools exist to create correct initial-data sets (physics data read in on physics grid)

• Input (infld) correctly handles the different grids

- Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch
- Tools exist to create correct initial-data sets (physics data read in on physics grid)
- Input (infld) correctly handles the different grids
- CAM history correctly outputs physics variables on physics grid (both initial data files and history files end up with two grids)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch
- Tools exist to create correct initial-data sets (physics data read in on physics grid)
- Input (infld) correctly handles the different grids
- CAM history correctly outputs physics variables on physics grid (both initial data files and history files end up with two grids)
- Debugging ongoing using aquaplanet, Held-Suarez, and AMIP experiments

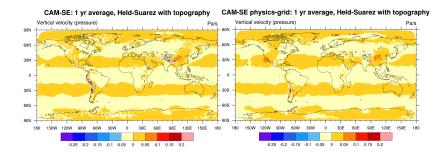
- Physics grid with a fixed number of elements per spectral element (set by appropriate -hgrid) runs in a CAM branch
- Tools exist to create correct initial-data sets (physics data read in on physics grid)
- Input (infld) correctly handles the different grids
- CAM history correctly outputs physics variables on physics grid (both initial data files and history files end up with two grids)
- Debugging ongoing using aquaplanet, Held-Suarez, and AMIP experiments
- Experimenting with special case where the physics grid and the CSLAM grid are identical (3x3 or 4x4, set by namelist variables).

Outline	Why	Problem	What	Interp	Status	Future	Results
			Future	Work			

• Complete and test science with CSLAM

- Complete and test science with CSLAM
- Merge infrastructure and physics grid changes up to CAM trunk

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



- Complete and test science with CSLAM
- Merge infrastructure and physics grid changes up to CAM trunk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Look into reading in an arbitrary physics grid (useful when dealing with refined dynamics grids)

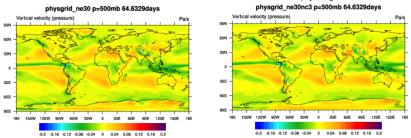

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure acknowledgment: Peter Lauritzen

Omega 500mb

CAM-SE

When using a 3x3 physics grid, cell averaged quantities reduce extrema seen by the physics. Vertical pressure velocity is less noisy near steep topography (Andes, Himalayas)

Figure acknowledgment: Mark Taylor

CAM-SE physics-grid

Questions?

Contact: goldy@ucar.edu

