
Parallel Infrastructure in MOAB for Climate Data

Iulian Grindeanu, Danqing Wu, Robert Jacob

Mathematics and Computer Science Division

Argonne National Laboratory

 19th Annual CESM Workshop

2

Outline

 What is MOAB?
 Parallel framework in MOAB
 Climate-driven features

– Structured interface
– Climate data readers/writers
– Distributed parallel intersection

 Examples

3

MOAB : Mesh Oriented datABase

- Lightweight C++ library, used to represent and evaluate mesh data
- Functional interface is simple, yet powerful
- Based on access to mesh in chunks rather than on individual

entities: array based representation
- Data model consists of four fundamental types:

mesh interface instance
mesh entities : vertex, edge, quad, polygon, hexahedron, ...
Sets : arbitrary groupings of mesh entities and other sets

• Support also parent-child relation between sets
• Partition sets for distributing meshes
• Topological relations between different entities
• Different search trees are implemented using sets

Tags : named data which can be assigned to the mesh as a whole,
to individual entities, or to sets

• Field data represented with dense tags
• Attributes represented with sparse tags

4

How to use MOAB?

MOAB can be used in several ways in applications:

1) Underlying mesh data structure : linked directly to the scientific code
• Pargal/Parvis, MeshKit/RGG, DAGMC, ...

2) Mesh + metadata translator : various mesh readers/writers
• MOAB is configurable with HDF5, NETCDF, PNETCDF, CGNS,

CCMIO, VTK

3) Coupling between different physics : mbcoupler tool
• Nek5000 + Proteus + Diablo coupling
• COUPE uses mbcoupler for non-intrusive coupling

5

MOAB Parallel Model
 Each processor has one MOAB

instance, which appears locally as a
serial mesh

 All serial MOAB function calls
available locally

 Parallel model depends on
element-based partition

 Neighbors communicate
 Each element assigned to exactly

one part, with vertices shared
between parts

 Parallel model usually initialized
by loading from some
decompositions in file

 Material set, geometric volume,
trivial or Zoltan-generated
partitioning

 Ghosting is supported
 Once the parallel model is

resolved, the user can use
“exchange_tags” for
communication

6

MOAB Parallel Model

7

MOAB Parallel Model

Ghost layer(s)
easy to obtain

8

MOAB Parallel Model

9

MOAB Parallel Model

10

How to partition meshes, for a distributed parallel
read ?

CAM Euler/FV files: lat-lon grid.
Use ScdInterface, a special class in moab, to handle structured grid.
It handles periodicity too.

11

How to partition/distribute meshes, for a
distributed parallel read ?

MPAS files : typical data look like that:

…

dimensions:

 nCells = 642 ;

 nEdges = 1920 ;

 nVertices = 1280 ;

 maxEdges = 10 ;

...

variables:

 double u(Time, nEdges, nVertLevels) ;

 double v(Time, nEdges, nVertLevels) ;

 double h(Time, nCells, nVertLevels) ;

 double vh(Time, nEdges, nVertLevels) ;

 double circulation(Time, nVertices, nVertLevels) ;

12

First method: Trivial Partition

- Classic method, natural
- Get the number of cells N, divide by number of processors p, then

every processor reads its “slice”, in parallel

Processor k reads values for cells [k*[N/p] .. (k+1)*[N/p])

0 N/p 2*N/p 3*N/p N

Task 0 Task 2 Task (p-1)Task 1

13

Small MPAS file, 16 parts, 642 cells, trivial partition

Every color
means a
different
part

Why are the
parts in
partition so
disjoint?

14

Small MPAS file, global ID plot

Color
shows the
order in the
file, from 1
to 642

15

Small MPAS file, 16 parts, global ID, zoom in

Color
shows the
order in the
file, from 1
to 642

16

Color
shows
partition tag

Medium MPAS file, 64 parts, 163K cells
(92km refined to 25 km over NA)

Pretty picture, but:
 communication load

Still, reading the mesh on 64 tasks
 took 1.4s (including resolving sharing)

17

Large MPAS file, 65M polygons

Trivial partition: MOAB had a problem :(
The reader broke down. It read the mesh, but it was not able to

resolve the shared entities, on 1024 tasks.

Solution: repartition, using Zoltan.

Read in the “trivial” step, just the centers of the cells;

Then, repartition the cells, to be more compact in space.
Each processor reads (cherry-picks) the connectivity and vertex

positions of the cells in its partition: all these calls are nonblocking
reads, with pnetcdf.

18

Repartition with Zoltan (cont)

0 N

Task 0 Task 2 Task (p-1)Task 1

- Every task will read smaller slices, as directed by repartitioning
- All reads are nonblocking

19

Repartition, medium MPAS file, 64 parts

Reading on 64 tasks: 0.6s
(trivial partition took 1.4s)

20

Partition of large file, 1024 parts

Show just the
boundary between
parts, and the mesh
on one part

21

Partition of large file, 1024 parts, zoom in

Show just the
boundary between
parts, and the mesh
on one part : ~65K
cells in each part

22

Some scalability results for reading / writing
climate data files with MOAB

Example 1: 0.25 degree CAM-SE cubed sphere; 777602x26
 f1850_ne120tx01.cam2.h0.0006- 01.nc

1 10 100

0.1

1

10

test4: cam interpolated

read mesh+ CLDICE
writeCLDICE

tasks

tim
e(

s)

23

More results

Example 2: 3Km MPAS grid x1.65536002.output.2009-01-
28_00.00.00.nc (65M cells)

10 100 1000
1

10

100

1000

test2: MPAS large file

read mesh+ke
write ke

tasks

tim
e(

s)

24

More results

Example 3: 0.25 degree CAM-FV; 768x1152x26
 f40_amip_025d_b06c4_207jp.cam2.h0.1986-04.nc (4.1 Gb)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

test3: cam file

read mesh+CFMDQ
writeCFMDQ

tasks

tim
e(

s)

25

More results

Example 2:
MPAS 92-km global resolution refined down to 25-km resolution over

North America; 163842x42 x1.163842.2010102800.nc

1 10 100 1000

0.1

1

10

test 1: mpas medium

read mesh+ke
write ke

tasks

tim
e(

s)

26

Intersection of meshes (CSLAM)

For transport/advection problems, one method is ALE
It was developed in an attempt to combine the advantages of the

Eulerian and the Lagrangian approaches, by letting the mesh
move in a prescribed manner as an extra independent degree of
freedom

Run in Lagrangian mode for one time-step and then interpolate back
to the static and regular (Eulerian) mesh. This interpolation step
involves intersecting the Lagrangian mesh (also called departure
mesh) and Eulerian mesh, and is known as semi-Lagrangian
method

For correct intersection resolution, mesh need to be communicated
to neighboring processors

27

Intersection of meshes

 Partitioning + departure mesh + covering

Intersection of distributed meshes

Results for Parallel Intersection
 MPAS 3km – 65M cells

10 100 1000 10000
1

10

100

1000

 65M Mesh on Fusion

communicate intersection

tasks

tim
e(

s)

1000 10000 100000
1

10

100

65M Mesh on BG/Q Mira

communicate intersect
tasks

tim
e(

s)

Future Development

- Improvements in parallel framework: local communicators, topology
aware communicators

- Coupling: different communicators for different physics/solvers
- New readers/writers for different climate formats
- Direct link with CAM/FV for CSLAM-related intersection

Extra Slides

References

Robert Jacob et. al. , “ParNCL and ParGAL: Data-parallel Tools for
Postprocessing of Large-scale Earth Science Data”, Procedia
Computer Science, Vol 18, 2013

Tim Tautges et. al. , “Mesh interface resolution and ghost exchange
in a parallel mesh representation”, Parallel and Distributed
Processing Symposium Workshop, 2012

T. J. Tautges, et. al. . MOAB: a mesh-oriented database. SAND2004-
1592, Sandia National Laboratories, 2004. Report.

33

MOAB Entity Storage

Entity Handle:
•Unsigned long type
•Bitmask
•Sorts by dimension,
 type

4-bit
type

28-or 60-bit ID

EntitySequences:
Represent used portions of handle space
Have pointer to SequenceData
Have start and end handle values
Arranged in binary tree by start handle

Typically one
EntitySequence for an
entire SequenceData

SequenceData:
Represent allocated
portions of handle space
Have start and end handle
Coordinates or Connectivity
Dense Tag Data

Connectivity array

Cache most recently
accessed
EntitySequence

Dense tag #1
Dense tag #2
…

Range:
•Container of
 handles
•Constant-size if
 contiguous handles

s1-e1 s2-e2 …

…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

