CESM Workflow Refactoring

Sheri Mickelson (mickelso@ucar.edu) Kevin Paul, Alice Bertini, John Dennis, Haiying Xu, Dave Brown, Mary Haley, Jim Edwards, Mariana Vertenstein

Systems Laboratory

nal & Information

nputati

Time Series Generation Tool

History Time Slice Files

Time 1	Time 2	Time m
header	header	header
Field 1	Field 1	 Field 1
Field 2	Field 2	Field 2
Field n	Field n	Field n

Transposed to Time Series Files

Field n+1	Header	Time 1	Time 2	 Time m
Field n+2	Header	Time 1	Time 2	 Time m
Field n+x	Header	Time 1	Time 2	 Time m

Current Time Series Generation Tool

CSH scripts

aboratory

Informati

uput

Uses NCO tools to transpose the data

Problems with current tool:

- Lacks a flexible environment
- Runs in serial mode/no parallelization
- Takes a long time to run

Current Time Series Generation Tool

nversion w/coord variables

14 hours

NCO

Datasets – 10 yrs monthly history files	Size (Gbytes)	
CAMFV-1.0	28	
CAMSE-1.0	31	
CICE-1.0	8	
CAMSE-0.25	1077	
CLM-1.0	9	5 hours
CLM-0.25	84	
CICE-0.1	570	
POP-0.1	3184	
POP-1.0	194	
*** • •		

Comparing the time it takes to convert 10 years of monthly time slice data to time series data using the existing method

ICAR

CESM/CMIP Archive Sizes

 It took 15 months to transpose the 170 TB of CESM data from time slice to time series

omputational & Information Systems Laboratory

JCAR

Approaches to Parallelism

Data Parallelism:

Computational & Information Systems Laboratory

 Divide a single variable across multiple ranks

Task Parallelism:

 Divide independent tasks across multiple ranks

ncReshaper vs. pyReshaper

	ncReshaper	pyReshaper
Type of Parallelism	Data	Task
Code Specifications	Fortran MPI PIO – I/O Library in CESM	Python MPI4py pyNIO – NCL I/O Library

Experiment:

& Information Systems Laboratory

computational

- Convert the 10 year datasets using both methods
- Compare the results

10

Duration

Throughput Rates

NCAR

Ongoing Work

Developing a release version of the pyReshaper

- Easy installation (distutils)
- Simple usage:

aboratory

System

nal & Information

```
from pyreshaper import reshaper
from pyreshaper import specification
```

```
spec1 = specification.create_specifier(spec_type="slice-to-series")
spec1.input_file_list = ["path/to/file1.nc", "path/to/file2.nc", ...]
spec1.output_file_prefix = "path/to/output/dir/prefix."
spec1.output_file_suffix = ".000101-001012.nc"
spec1.time_variant_metadata = ["time", "time_bound", ...]
```

```
rshpr = reshaper.create_reshaper([spec1, ...], serial=False)
rshpr.convert()
rshpr.print_diagnostics()
```


Ongoing Work

pyAverager

Problem: To create yearly averages within the OMWG Diagnostic Package	Compute Time
Time Slice: ncra \${CASENAME}.pop.h.\${year}-??.nc \${CASENAME}.pop.h.\${year}.nc	3 mins
Time Series: foreach var (\$var_list) foreach month (1 2 3 4 5 6 7 8 9 10 11 12) ncks -O -F -d time,\$i,\$i,1 TimeSeriesFile.nc temp_\${yr}_\${m_print}.\$var.nc ncra -O temp_*.\$var.nc yearlyAve.\$var.nc foreach variable ncks -A yearlyAve.\$var.nc yearlyAve_\${yr}nc	40 mins

*** Compute time was the time it took to calculate 3 yearly averages in parallel for a 1 degree POP dataset w/ biogeochemistry variables added (230 variables/files) with 16 mpi tasks

New: Parallel python/pyNIO/numpy/mpi4py → 2 1/2 minutes

NCAR

- We will be releasing the pyReshaper and new archiving tools within an upcoming CESM release
- We were able to speed up the process of converting time slice to time series by a least a factor of 8
- Looking to see if we're able to speed up other commonly run operations using similar methods

.5

Thank you NSF for your support (grant #M0856145)

And thank you Gary Strand for the CMIP statistics.

Systems Laboratory

& Information

nputati

Dataset characteristics: 10-years of monthly output

Dataset	# of 2D vars	# of 3D vars	Input total size (Gbytes)
CAMFV-1.0	40	82	28.4
CAMSE-1.0	43	89	30.8
CICE-1.0	117		8.4
CAMSE-0.25	101	97	1077.1
CLM-1.0	297		9.0
CLM-0.25	150		84.0
CICE-0.1	114		569.6
POP-0.1	23	11	3183.8
POP-1.0	78	36	194.4

Computational & Information Systems Laboratory

Other methods that were tested

Duration

Throughput

PyReshaper testing results for different netCDF types

Duration

Throughput

omputational & Information Systems Laboratory

