
Unit Testing in CESM

Unit Testing in CESM
Introducing a new tool set

Sean Patrick Santos

National Center for Atmospheric Research

19th Annual CESM Workshop, 2014

Unit Testing in CESM

Overview

Outline

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:

Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:

Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.

Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).

Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.

Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.

Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Motivation

We have automated system tests already, which are:
Indispensible for regression testing.
Often highly useful for developers, but too slow (>= 10
min!).
Coarse. Tracking down a problem requires detailed
reasoning or trial-and-error.

A unit test framework simplifies writing and running tests
of isolated subroutines.
Standard unit test suites preserve tests that developers
might otherwise lose or abandon.
Fast, automated tests allow for agile development.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.
After each set of code modifications, rebuilding and
rerunning take seconds (or less).
New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.
Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.

After each set of code modifications, rebuilding and
rerunning take seconds (or less).
New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.
Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.
After each set of code modifications, rebuilding and
rerunning take seconds (or less).

New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.
Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.
After each set of code modifications, rebuilding and
rerunning take seconds (or less).
New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.

Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.
After each set of code modifications, rebuilding and
rerunning take seconds (or less).
New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.
Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

Current Tool Status

A new script (run_tests.py) can run automated unit
test suites for each component with one command.
After each set of code modifications, rebuilding and
rerunning take seconds (or less).
New scripts and CMake modules are present in CESM 1.3
beta tags, and planned for release next year.
Unit test suites are already being used in development
versions of CLM and csm_share.

CAM unit tests planned for trunk commit in July.

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)

“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)

“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).

Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.

Provides a generic Fortran test driver.
CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest

Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest
Developed by Kitware, funded by the NIH.

CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest
Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.

CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

External Tools

pFUnit (http://sourceforge.net/p/pfunit)
“xUnit” style test framework for parallel Fortran 2003,
developed at NASA (Goddard Space Flight Center).
Preprocessor and utility routines simplify adding tests and
improve the output for failed tests.
Provides a generic Fortran test driver.

CMake/CTest
Developed by Kitware, funded by the NIH.
CMake builds subsets of the source code.
CTest aggregates tests from multiple executables.

http://sourceforge.net/p/pfunit

Unit Testing in CESM

Overview

CSEG Development

run_tests.py

CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py

CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.

Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.

Integrates with CESM’s Machines/ files.
CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils

Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils
Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).

Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils
Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.

Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Overview

CSEG Development

run_tests.py
CESM-specific Python script.
Simplifies building and running one or more CTest suites
out of source.
Integrates with CESM’s Machines/ files.

CMake_Fortran_utils
Provides utility functions for CESM builds (e.g. the
genf90.pl preprocessor).
Contains hooks for CESM Machines/ information.
Provides functions to handle pFUnit build and test output.

Unit Testing in CESM

Workflows

Outline

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Workflows

Running Unit Tests

Overview

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Workflows

Running Unit Tests

Top Level CMakeLists.txt

CLM source listing

|> ls -1 ${CESMROOT}/models/lnd/clm/src/
clm4_0
clm4_5
CMakeLists.txt
cpl
README.unit_testing
unit_test_mocks
unit_test_shr
util_share

Unit Testing in CESM

Workflows

Running Unit Tests

Top Level CMakeLists.txt

CLM source listing

|> ls -1 ${CESMROOT}/models/lnd/clm/src/
clm4_0
clm4_5
CMakeLists.txt
cpl
README.unit_testing
unit_test_mocks
unit_test_shr
util_share

Unit Testing in CESM

Workflows

Running Unit Tests

Using run_tests.py

Example with CTest output

|> cd ${CESMROOT}/tools/unit_testing
|> run_tests.py --compiler=nag \
|> --test-spec-dir=${CESMROOT}/models/lnd/clm/src \
|> --build-dir=${TEMPDIR}/clm_tests

<<<Tons of CMake/CTest output.>>>

100% tests passed, 0 tests failed out of 7

Total Test time (real) = 0.15 sec

Unit Testing in CESM

Workflows

Running Unit Tests

Test Failures

Example with a CTest failure

|> export CTEST_OUTPUT_ON_FAILURE=TRUE
|> run_tests.py --compiler=nag \
|> --test-spec-dir=${CESMROOT}/models/lnd/clm/src \
|> --build-dir=${TEMPDIR}/clm_tests

<<<Tons of CMake/CTest output.>>>
1/7 Test #1: daylength***Failed
Error regular expression found in output.
Regex=[FAILURES!!!] 0.00 sec

<<<pFUnit and CTest output.>>>
86% tests passed, 1 tests failed out of 7

Total Test time (real) = 0.08 sec

The following tests FAILED:
1 - daylength (Failed)

Errors while running CTest

Unit Testing in CESM

Workflows

Running Unit Tests

pFUnit Output

pFUnit output when “test_near_poles” fails

..F.....
Time: 0.001 seconds

Failure in: test_near_poles
Location: [test_daylength.pf:31]

expected: +0.000000 but found: +1.000000;
difference: |+1.000000| > tolerance:+0.1000000E-02;
first difference at element [1].

FAILURES!!!
Tests run: 7, Failures: 1, Errors: 0

Unit Testing in CESM

Workflows

Creating Unit Tests

Overview

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Workflows

Creating Unit Tests

A Short pFUnit Example

@ marks pFUnit directives for the preprocessor.
Otherwise, a normal module using pfunit_mod .

test_daylength.pf (excerpt)

@Test
subroutine test_near_poles()
! Tests points near the north and south
! pole, which should result in full night
! and full day
@assertEqual([0.0_r8, 86400.0_r8],
daylength([-1.5_r8, 1.5_r8], 0.1_r8),
tolerance=tol)

end subroutine test_near_poles

Unit Testing in CESM

Workflows

Creating Unit Tests

A Short pFUnit Example

@ marks pFUnit directives for the preprocessor.

Otherwise, a normal module using pfunit_mod .

test_daylength.pf (excerpt)

@Test
subroutine test_near_poles()
! Tests points near the north and south
! pole, which should result in full night
! and full day
@assertEqual([0.0_r8, 86400.0_r8],
daylength([-1.5_r8, 1.5_r8], 0.1_r8),
tolerance=tol)

end subroutine test_near_poles

Unit Testing in CESM

Workflows

Creating Unit Tests

A Short pFUnit Example

@ marks pFUnit directives for the preprocessor.
Otherwise, a normal module using pfunit_mod .

test_daylength.pf (excerpt)

@Test
subroutine test_near_poles()
! Tests points near the north and south
! pole, which should result in full night
! and full day
@assertEqual([0.0_r8, 86400.0_r8],
daylength([-1.5_r8, 1.5_r8], 0.1_r8),
tolerance=tol)

end subroutine test_near_poles

Unit Testing in CESM

Workflows

Creating Unit Tests

pFUnit Output

pFUnit output when “test_near_poles” fails

..F.....
Time: 0.001 seconds

Failure in: test_near_poles
Location: [test_daylength.pf:31]

expected: +0.000000 but found: +1.000000;
difference: |+1.000000| > tolerance:+0.1000000E-02;
first difference at element [1].

FAILURES!!!
Tests run: 7, Failures: 1, Errors: 0

Unit Testing in CESM

Workflows

Creating Unit Tests

Workflow Summary - pFUnit Tests

1 Make a module that uses pfunit_mod .

2 Write a test subroutine that uses one of the @assert
directives to test a condition.

3 Annotate each routine with @Test .
4 Additional features, such as test fixtures, reduce
duplication between tests (see appendix).

Unit Testing in CESM

Workflows

Creating Unit Tests

Workflow Summary - pFUnit Tests

1 Make a module that uses pfunit_mod .

2 Write a test subroutine that uses one of the @assert
directives to test a condition.

3 Annotate each routine with @Test .
4 Additional features, such as test fixtures, reduce
duplication between tests (see appendix).

Unit Testing in CESM

Workflows

Creating Unit Tests

Workflow Summary - pFUnit Tests

1 Make a module that uses pfunit_mod .

2 Write a test subroutine that uses one of the @assert
directives to test a condition.

3 Annotate each routine with @Test .
4 Additional features, such as test fixtures, reduce
duplication between tests (see appendix).

Unit Testing in CESM

Workflows

Creating Unit Tests

Workflow Summary - pFUnit Tests

1 Make a module that uses pfunit_mod .

2 Write a test subroutine that uses one of the @assert
directives to test a condition.

3 Annotate each routine with @Test .

4 Additional features, such as test fixtures, reduce
duplication between tests (see appendix).

Unit Testing in CESM

Workflows

Creating Unit Tests

Workflow Summary - pFUnit Tests

1 Make a module that uses pfunit_mod .

2 Write a test subroutine that uses one of the @assert
directives to test a condition.

3 Annotate each routine with @Test .
4 Additional features, such as test fixtures, reduce
duplication between tests (see appendix).

Unit Testing in CESM

Workflows

Creating Unit Tests

Non-pFUnit Tests

pFUnit is generally more convenient, but does not support
PGI or older versions of GNU.
Have not yet selected any specific frameworks for
non-Fortran code.
If not using pFUnit, you are on your own, but any test
program compatible with CTest should work.

Unit Testing in CESM

Workflows

Creating Unit Tests

Non-pFUnit Tests

pFUnit is generally more convenient, but does not support
PGI or older versions of GNU.

Have not yet selected any specific frameworks for
non-Fortran code.
If not using pFUnit, you are on your own, but any test
program compatible with CTest should work.

Unit Testing in CESM

Workflows

Creating Unit Tests

Non-pFUnit Tests

pFUnit is generally more convenient, but does not support
PGI or older versions of GNU.
Have not yet selected any specific frameworks for
non-Fortran code.

If not using pFUnit, you are on your own, but any test
program compatible with CTest should work.

Unit Testing in CESM

Workflows

Creating Unit Tests

Non-pFUnit Tests

pFUnit is generally more convenient, but does not support
PGI or older versions of GNU.
Have not yet selected any specific frameworks for
non-Fortran code.
If not using pFUnit, you are on your own, but any test
program compatible with CTest should work.

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Overview

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Source Directory CMakeLists.txt

Add any new sources to the component’s source list.
sourcelist_to_parent exports the source list.

CMakeLists.txt (CLM biogeophys)

Note that this is just used for unit
testing; hence, we only need to add source
files that are currently used in unit tests

list(APPEND clm_sources DaylengthMod.F90)

sourcelist_to_parent(clm_sources)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Source Directory CMakeLists.txt

Add any new sources to the component’s source list.

sourcelist_to_parent exports the source list.

CMakeLists.txt (CLM biogeophys)

Note that this is just used for unit
testing; hence, we only need to add source
files that are currently used in unit tests

list(APPEND clm_sources DaylengthMod.F90)

sourcelist_to_parent(clm_sources)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Source Directory CMakeLists.txt

Add any new sources to the component’s source list.
sourcelist_to_parent exports the source list.

CMakeLists.txt (CLM biogeophys)

Note that this is just used for unit
testing; hence, we only need to add source
files that are currently used in unit tests

list(APPEND clm_sources DaylengthMod.F90)

sourcelist_to_parent(clm_sources)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Test Directory CMakeLists.txt

create_pFUnit_test accepts a test name, executable
name, pFUnit sources, and Fortran sources, and adds a
pFUnit executable to CTest.
target_link_libraries used to add libraries for
CLM. Due to differences in build-time options, CAM will
use a source-list based method instead (see appendix).

CMakeLists.txt (linear_1d_operators)

create_pFUnit_test(daylength test_daylength_exe
"test_daylength.pf" "")

target_link_libraries(test_daylength_exe clm
csm_share)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Test Directory CMakeLists.txt

create_pFUnit_test accepts a test name, executable
name, pFUnit sources, and Fortran sources, and adds a
pFUnit executable to CTest.

target_link_libraries used to add libraries for
CLM. Due to differences in build-time options, CAM will
use a source-list based method instead (see appendix).

CMakeLists.txt (linear_1d_operators)

create_pFUnit_test(daylength test_daylength_exe
"test_daylength.pf" "")

target_link_libraries(test_daylength_exe clm
csm_share)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Test Directory CMakeLists.txt

create_pFUnit_test accepts a test name, executable
name, pFUnit sources, and Fortran sources, and adds a
pFUnit executable to CTest.
target_link_libraries used to add libraries for
CLM. Due to differences in build-time options, CAM will
use a source-list based method instead (see appendix).

CMakeLists.txt (linear_1d_operators)

create_pFUnit_test(daylength test_daylength_exe
"test_daylength.pf" "")

target_link_libraries(test_daylength_exe clm
csm_share)

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Workflow Summary

1 Add CESM sources to their directories’ CMakeLists.txt.
2 Create a test subdirectory and call add_subdirectory
on it in the top level CMakeLists.txt file.

3 In CMakeLists.txt for your unit test subdirectory, add an
executable and a test.

4 Link to (or directly add) the CESM source code you are
testing.

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Workflow Summary

1 Add CESM sources to their directories’ CMakeLists.txt.

2 Create a test subdirectory and call add_subdirectory
on it in the top level CMakeLists.txt file.

3 In CMakeLists.txt for your unit test subdirectory, add an
executable and a test.

4 Link to (or directly add) the CESM source code you are
testing.

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Workflow Summary

1 Add CESM sources to their directories’ CMakeLists.txt.
2 Create a test subdirectory and call add_subdirectory
on it in the top level CMakeLists.txt file.

3 In CMakeLists.txt for your unit test subdirectory, add an
executable and a test.

4 Link to (or directly add) the CESM source code you are
testing.

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Workflow Summary

1 Add CESM sources to their directories’ CMakeLists.txt.
2 Create a test subdirectory and call add_subdirectory
on it in the top level CMakeLists.txt file.

3 In CMakeLists.txt for your unit test subdirectory, add an
executable and a test.

4 Link to (or directly add) the CESM source code you are
testing.

Unit Testing in CESM

Workflows

Setting Up Unit Test Builds

Workflow Summary

1 Add CESM sources to their directories’ CMakeLists.txt.
2 Create a test subdirectory and call add_subdirectory
on it in the top level CMakeLists.txt file.

3 In CMakeLists.txt for your unit test subdirectory, add an
executable and a test.

4 Link to (or directly add) the CESM source code you are
testing.

Unit Testing in CESM

Epilogue

Outline

1 Overview

2 Workflows
Running Unit Tests
Creating Unit Tests
Setting Up Unit Test Builds

3 Epilogue

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!
Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.
Improve run_tests.py output.

Divert CMake output to log file.
Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!

Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.
Improve run_tests.py output.

Divert CMake output to log file.
Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!
Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.

Improve run_tests.py output.

Divert CMake output to log file.
Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!
Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.
Improve run_tests.py output.

Divert CMake output to log file.
Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!
Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.
Improve run_tests.py output.

Divert CMake output to log file.

Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

To-Do List

Add more unit tests!
Come up with a strategy for leveraging information about
batch systems in Machines/ to run MPI tests on
clusters.
Improve run_tests.py output.

Divert CMake output to log file.
Leverage recent pFUnit improvements (e.g. verbose and
XML outputs).

Unit Testing in CESM

Epilogue

Acknowledgements

Tom Clune and Michael Rilee, for regularly updating
pFUnit in response to our feedback.
Bill Sacks, for being an early adopter, proponent, and
contributor.
Everyone who gave early feedback and/or were early
adopters (especially CLM developers).

Unit Testing in CESM

Epilogue

Resources

Martin Fowler on the definition of “unit test”:
http://martinfowler.com/bliki/UnitTest.html

The pFUnit home page:
http://sourceforge.net/p/pfunit

CESM and PIO CMake modules:
https://github.com/CESM-Development/CMake_
Fortran_utils

This presentation (once posted):
http:
//www.cesm.ucar.edu/events/workshops.html

http://martinfowler.com/bliki/UnitTest.html
http://sourceforge.net/p/pfunit
https://github.com/CESM-Development/CMake_Fortran_utils
https://github.com/CESM-Development/CMake_Fortran_utils
http://www.cesm.ucar.edu/events/workshops.html
http://www.cesm.ucar.edu/events/workshops.html

Unit Testing in CESM

Appendix: More About run_tests.py

Other Features

Only changed files are rebuilt unless -clean is passed.
Using CESM or CESM_DEBUG as the build type will
extract the corresponding compiler flags from Machines.
(Set by -build-type .)

-ctest-args and -verbose can be used to change
flags sent to the underlying commands.

Unit Testing in CESM

Appendix: More On pFUnit

pFUnit test fixtures

Global data Annotate setup and teardown routines with
@Before and @After , respectively.

Test-specific data Subclass TestClass with a type that has
the data you need, and annotate it with @TestCase . The
setUp , tearDown , and test routines will be passed an
argument of your type called this .

Unit Testing in CESM

Appendix: More On pFUnit

test_fd_solver.pf

Module header

module test_fd_solver
use pfunit_mod
! <More use statements, implicit none, comments>

! Grid size used by these tests.
integer, parameter :: n = 101

! The grid itself (mid-points and distances
! between points).
real(r8) :: x(1,n), deltas(1,n-1)

contains
! <Continued...>

Unit Testing in CESM

Appendix: More On pFUnit

test_fd_solver.pf

setUp/tearDown

@Before
subroutine setUp()

integer :: i
! Grid is n points between 0 and 1.
x(1,:) = [(real(i, r8) / real(n-1, r8), i = 0, n-1)]
! Introduce nonuniformity.
x = x*x
deltas = x(:,2:) - x(:,:n-1)

end subroutine setUp

@After
subroutine tearDown()
! Fight pollution!
x = 0._r8
deltas = 0._r8

end subroutine tearDown

Unit Testing in CESM

Appendix: More On pFUnit

test_fd_solver.pf

solves_decay

@Test
subroutine solves_decay()

! Time step.
real(r8) :: dt
! PDE coefficients.
real(r8) :: coef_q(1,n)
! Array to evolve.
real(r8) :: q(1,n), q_expected(1,n)
! Decomposed diffusion matrix.
type(lu_decomp) :: diff_decomp

! Equation to solve is dq/dt = -q
coef_q = -1._r8
dt = 1._r8
! Decomposition
diff_decomp = vd_lu_decomp(dt, deltas, &

coef_q=coef_q)

solves_decay

! We are seeking the solution
! q(x,t) = e^(-t) * cos(pi*x)
! Set q for t = 0.
q = cos(pi*x)
! Expected result after one step.
q_expected = cos(pi*x)*exp(-dt)

call diff_decomp%solve(q)

! Max error in this case is
! (1/2 - 1/e)*dt*maxval(x)
! which is
! ~dt*maxval(x)/6.
@assertEqual(q_expected, q, &

tolerance=dt*maxval(x)/6._r8)
end subroutine solves_decay

Unit Testing in CESM

Appendix: Non-pFUnit Tests

Suggested Workflow Summary - Non-pFUnit Tests

1 Define (or borrow) a very basic assert subroutine that
can signal a test failure to CMake (e.g. using a non-zero
return code).

2 Write a minimal program for each test.
3 Make separate modules for shared setup/teardown
routines.

Unit Testing in CESM

Appendix: Non-pFUnit Tests

A Short Non-pFUnit Example

assert is defined off-screen, using stop 1 .
Conundrum: a dozen executables, or a dozen asserts in
just one?

test_infnan.F90 (excerpt)

real(r8) :: inf
integer(i8), parameter :: dpinfpat = &

int(O’0777600000000000000000’,i8)
inf = transfer(dpinfpat,inf)

call assert(shr_infnan_isposinf(inf), &
"Test that value set to inf is inf")

Unit Testing in CESM

Appendix: More about CMakeLists.txt Files

Top Level CMakeLists.txt (Approach 1)

Include the CESM_utils module.
First subdirectories define global sourcelist variables.
Further subdirectories contain unit tests.

CMakeLists.txt (CAM, excerpt)

list(APPEND CMAKE_MODULE_PATH ${CESM_CMAKE_MODULE_DIRECTORY})
include(CESM_utils)

set(CAMROOT ../../)
set(CESMROOT ${CAMROOT}../../../)
add_subdirectory("${CESMROOT}/models/csm_share/shr" csm_share)
list(APPEND cam_sources ${share_sources})
add_subdirectory(${CAMROOT}src/physics/cam physics_cam)

add_subdirectory(linear_1d_operators)
add_subdirectory(vdiff_lu_solver)

Unit Testing in CESM

Appendix: More about CMakeLists.txt Files

Test Directory CMakeLists.txt (Approach 1)

extract_sources expands basenames to absolute paths.

create_pFUnit_test handles pFUnit builds (including
preprocessing), and adds the test to CTest.

CMakeLists.txt (linear_1d_operators)

Local pFUnit files.
set(pf_sources test_diagonal.pf test_derivatives.pf

test_arithmetic.pf)

Sources to test.
set(sources_needed shr_kind_mod.F90 linear_1d_operators.F90)
extract_sources("${sources_needed}" "${cam_sources}"
test_sources)

Do source preprocessing and add the executable.
create_pFUnit_test(linear_1d_operators linear_1d_operators_exe
"${pf_sources}" "${test_sources}")

Unit Testing in CESM

Appendix: More about CMakeLists.txt Files

Top Level CMakeLists.txt (Approach 2)

Similar to Approach 1, except that ${clm_sources} is
used to create a library before adding test directories.

CMakeLists.txt (CLM, excerpt)

add_library(csm_share ${share_sources})
add_library(clm ${clm_sources})
add_dependencies(clm csm_share)

Unit Testing in CESM

Appendix: More about CMakeLists.txt Files

Test Directory CMakeLists.txt (Approach 2)

Using extract_sources is not necessary.
Instead, link against libraries that are already added.

CMakeLists.txt (excerpt from CLM)

set(pfunit_sources
test_update_landunit_weights_one_gcell.pf
test_update_landunit_weights.pf)

create_pFUnit_test(dynLandunitArea
test_dynLandunitArea_exe "${pfunit_sources}" "")

target_link_libraries(test_dynLandunitArea_exe clm
csm_share)

Unit Testing in CESM

Appendix: Dirty Laundry

Limitations

pFUnit has more limited compiler support than CESM.
PGI’s Fortran 2003 support is not adequate to compile
pFUnit, largely due to compiler bugs.
You need a very recent version of GCC to compile with
gfortran (4.8 for pFUnit 2.1, 4.9 for pFUnit 3.0).

Making CTest work on MPI code on some HPC systems is
not trivial.

Unit Testing in CESM

Appendix: Dirty Laundry

Missing Features

The CMake/CTest system currently doesn’t help you much
with batch systems.
There’s no connection between aggregation at different
levels. CTest treats pFUnit executables as a single test
(but can print pFUnit’s output, so you can still see how
many tests failed).
CTest is only pass/fail; there’s no recognized way to skip
tests.
Not all pFUnit capabilities are leveraged. (E.g. there’s a
verbose output mode that we don’t provide a way to turn
on via CTest.)

	Overview
	Workflows
	Running Unit Tests
	Creating Unit Tests
	Setting Up Unit Test Builds

	Epilogue

