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motivation: new heterogeneous chemistry module

Updated heterogeneous chemistry changes partitioning of condensed-phase HNO; between
Nitric Acid Tri-hydrate (NAT) and Supercooled Ternary Solution (STS) [Wegner et al., JGR, 2013.]

nhew scheme

old scheme

—
o
T
Q
il
1

)

—
[=]
LI N
—
[=]
LI B B B

MLS HNO, [ppbv]

WAGGM HNO, [ppbv]
tn
- —

WACCM HNO:3 [Ppbv]

m
T T T T

HNO; 80% in STS.

0_

- 0_
| TR

185 190 195 200 205

185

185

WACCM Temperature [K]

s [ -1 1L L1 1 11
190 195 200 205 180
MLS Temperature [K]

Observation are most consistent
with HNO; => STS

190 195 200 205 180
WACCM Temperature [K]

PSC mainly composed as NAT

e Updated heterogeneous chemistry decreases irreversible denitrification by decreasing NAT and increasing STS

* Less denitrification allows reformation of CIONO, and continued heterogeneous halogen activation in Spring

* Heterogeneous rate for halogen activation on STS is very T-dependent (colder =» faster)

* This requires a more accurate representation of SH winter/spring polar temperature in the lower stratosphere
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which leads to a problem
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e WACM4 with old chemistry (red, blue, purple) is reasonably consistent with observations

e WACCM4 with new chemistry (green) produces unrealistically low ozone column because

the new heterogeneous chemistry parameteriztion is very sensitive to cold temperatures
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SH polar temperature bias in WACCM4

SH polar cap (70° -90° S) T climatology: 1980-2010
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The ozone problem is ultimately due to
the seasonal evolution of temperature in
the SH in WACCM4

standard version of WACCM4 has a
“cold pole bias” in the SH

T in ozone hole region/season is as
much as 5-10 K colder than observed



a possible solution

e polar temperatures are sensitive to wave-induced downwelling;
this suggests that wave forcing is too weak in the SH

e resolved wave amplitudes and dissipation are not easily adjustable

e parameterized gravity wave forcing is adjustable, but “tuning” the
existing parameterization to make GW break at lower altitudes
degrades the simulation in the mesosphere

e =>» add a spectrum of waves, with wavelength typical of the

inertia-gravity range (IGW, Fritts and Alexander, Rev. Geo., 2003),
to represent the effects of longer GW
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horizontal wavenumber spectrum

Gaussian width L = 35 km
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consider GW excitation by wind U flowing
across a Gaussian obstacle h’:
w =Udh' /dx~ kU h’

this produces a Gaussian wavenumber
spectrum of u’ == (m/k) w'~mU h’

for obstacles of reasonable width, L, the
spectral amplitude of u’ decreases rapidly
with increasing wavenumber (decreasing
wavelength)

this implies that IGW tend to have larger
source stress, T = p (k/m)|u’|?, than
mesoscale GW

=>» they break at lower altitude



WACCM4 with IGW: SH polar cap T climatology

SH polar cap T climatology: 1980-2010

250

2)‘

(o]

=

¢ ,.f WACCM4 IGW N
e E 1
2 210 €
E s
¢ 5
o j, s
TOE 100
g 10k 210 2107

e —— 730 N n n . 230 -

Jan Feb  Mar  Apr  May Jun Jul Aug Sep Oct Nov  Dec

B
S5
() ~
° o
3 [0
£ £
. g
5 ?
) n
1) o
o &
i
g 4
= 10F 210 i

N N 230 N : 230 —

Jan Feb  Mar  Apr  May Jun Jul Aug Sep Oct Nov Dec

log—pressure altitude (km)

pressure (hPa)

Jan Feb Mar Apr May

shaded: not significant ot 95% 31-point smoothing

WAWG June 2014

WACCM4 run with IGW using
typical A, =1000 km

IGW spectrum uses source stress

T=8x103 Pa
mesoscale GW spectrum uses
T=1x103 Pa

these values are consistent with
the simple theoretical arguments
outlined in previous slide

T in ozone hole region in SH
spring is now much warmer
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ozone column in WACCM4 with IGW
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blue: WACCM4 IGW, free-running, new het chemistry
purple: WACMA4 constrained with MERRA dynamics, new het chemistry
including IGW “solves” the low ozone problem

(except in December, because final vortex breakdown is still too late)
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e addition of IGW improves the climatology of T
and ozone in the SH lower stratosphere

* does it preserve other, desirable aspects of
the model’s climatology elsewhere?
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mesopause T climatology is preserved

refc1.002 vs. refc1.001 (dash) T 1980-2010
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in either hemisphere, summer mesopause T changes < 3 K
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stratospheric T in the NH

refc1.001 annual climatology of T 1980-2010 (69°:90°) refc1.002 annual climatology of T 1980-2010 (69°:90°)
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subpolar U (60°

refc1.001 annual cllmotology of UBAR 1980 2010 (59°:59°)
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SSW statistics: WACCM4 and WACCM4 IGW

previous WACCM4 and observations

a) monthly frequency SSW-all events
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e WACCM4 with IGW produces too many SSW late in the season (March)
* results are for a 3-member ensemble, so unlikely to arise by chance
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a closer look at U climatology (10 hPa,
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* In NH winter, U is stronger in MERRA than in either WACCM4 version in midwinter
* In NH winter, U is overall weaker in WACCM4 IGW than in WACCM4 in winter
* In NH spring, U is weaker in WACCM4 IGW than in WACCM4, but closer to MERRA
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conclusions

e the addition of a second spectrum of parameterized gravity waves, in the
IGW range, is physically reasonable

e it ameliorates the SH cold-pole problem problem and allows realistic
simulation of Antarctic ozone with the updated WACCM4 heterogeneous
chemistry module

e it preserves the climatology of the MLT, in particular the temperature and
altitude of the summer mesopause

e it produces relatively minor changes in U and T in the NH and agrees with
MERRA data for the NH at least as well as the standard version of
WACCM4

* however, it still does not produce an early enough final warming in the SH

e and it produces too many late-season SSW in the NH—this aspect of the
simulation needs further study
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