SC-WACCM and Problems with Specifying the Ozone Hole

<u>R. Neely III¹</u>, K. Smith², D. Marsh¹,L. Polvani² ¹NCAR, ²Columbia

Thanks to: Mike Mills, Francis Vitt and Sean Santos

Contraction of the second seco

Motivation

To design a stratosphere-resolving model that can be used for studies of middle atmosphere dynamics without the expense of running interactive chemistry.

SC-WACCM Physics

- Based on CESM1(WACCM)
- Ozone and CO₂ specified from <u>prior</u> fully-interactive WACCM simulations
- Excludes comprehensive chemistry solves only for H₂O, CH₄, N₂O, CFC-11 and CFC-12
- Radiative transfer:
 - CAM-RT below ~65 km
 - Short-wave heating rates prescribed above >65 km from same 'fully-interactive' simulations
 - Non-LTE cooling calculated from model temperature and prescribed $CO_2 > 65 km$
- No auroral physics
- Parameterized non-orographic gravity waves as in WACCM
- TMS turned on

SC-WACCM Resolution

- 1.9° latitude x 2.5° longitude
- Same 66 levels as WACCM (fully-resolved stratosphere and mesosphere):
 - model top at 5.1x10-6 hPa (~140 km)
 - 18 pressure levels between the surface and 100 hPa are identical to CCSM4
 - Stratosphere: 17 levels in WACCM between 100 and 3 hPa (versus 8 in CCSM4)

SC-WACCM Performance

SC-WACCM is half the computational cost of WACCM

Pre-Industrial WACCM and SC-WACCM Simulations

- WACCM & SC-WACCM
 - 200 years, coupled 1850 pre-industrial control simulation
 - · daily and monthly output (SC-WACCM available on glade and soon on the ESG)
- · CCSM4
 - · 500 years, coupled 1850 pre-industrial control simulation with monthly output
 - 54 years of daily output

Zonal Mean Differences in Wind and Temperature DJF JJA (a) ∆T (DJF) (b) **\(\Delta\)T (JJA)** 0.01 0.01 2 0.1 0.1 -9 -8 -6 Pressure (hPa) Pressure (hPa) -1 1 1 ΔΤ 10 10 100 100 1000 1000 --30 30 60 90 -90 -60 -30 60 -90 -60 0 30 0 90 Latitude Latitude (c) ΔU (DJF) (d) **∆U** (JJA) 0.01 0.01 \circ 0.1 0.1 2 Pressure (hPa) Pressure (hPa) \square 1 ΔU 10 10 100 100 1000 1000 -90 -90 -60 -30 30 60 90 -60 -30 30 60 90 0 0 Latitude Latitude

Surface climate

Problems with Specifying an Ozone Hole

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L07806, doi:10.1029/2007GL032698, 2008

Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone

Julia A. Crook,¹ Nathan P. Gillett,¹ and Sarah P. E. Keeley^{1,2}

Received 16 November 2007; revised 14 February 2008; accepted 27 February 2008; published 3 April 2008.

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10809, doi:10.1029/2009GL037246, 2009 Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone

N. P. Gillett,¹ J. F. Scinocca,¹ D. A. Plummer,¹ and M. C. Reader¹

Received 9 January 2009; revised 17 March 2009; accepted 8 April 2009; published 22 May 2009.

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18701, doi:10.1029/2009GL040419, 2009

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

D. W. Waugh,¹ L. Oman,¹ P. A. Newman,² R. S. Stolarski,² S. Pawson,³ J. E. Nielsen,³ and J. Perlwitz⁴

Received 6 August 2009; revised 21 August 2009; accepted 27 August 2009; published 22 September 2009.

Effect of Specifying Monthly Mean Ozone

20th Century Historical Simulations

- WACCM: 6 (3 New) members from 1955 to 2005 (started from differing atmospheric ICs)
- **SC-WACCM**: Uses **ensemble mean values** from prior WACCM runs for prescribed values
 - 2 x1955 to 2005 ensembles:

Impact of a Monthly Mean Specified Ozone Hole Monthly

a) Ozone: WACCM minus SC-WACCM(monthly)

Ozone

Impact of a Monthly Mean Specified Ozone Hole Monthly

a) Ozone: WACCM minus SC-WACCM(monthly)

Ozone

Short Wave Heating

Impact of a Monthly Mean Specified Ozone Hole Monthly

a) Ozone: WACCM minus SC-WACCM(monthly)

Ozone

Short Wave Heating

Temperature

Impact of a Monthly Mean Specified Ozone Hole Monthly Daily a) Ozone: WACCM minus SC-WACCM(monthly) b) Ozone: WACCM minus SC-WACCM(daily) Ozone (hPa) Pressure (hPa) -100 300 300 -200 Month Month c) SW Heating Rate: WACCM minus SC-WACCM(monthly) d) SW Heating Rate: WACCM minus SC-WACCM(daily) 0.15 Short Pressure (hPa) (hPa) Wave -0.05 Heating 300 -0.1 Month Month e) Temperature: WACCM minus SC-WACCM(monthly) f) Temperature: WACCM minus SC-WACCM(daily) (hPa) (hPa) Pressure (sure **Temperature** 30

Impact of a Monthly Mean Specified Ozone Hole Monthly Daily a) Ozone: WACCM minus SC-WACCM(monthly) b) Ozone: WACCM minus SC-WACCM(daily) Ozone (hPa) Pressure (hPa) -100 300 -200 Month Month c) SW Heating Rate: WACCM minus SC-WACCM(monthly) d) SW Heating Rate: WACCM minus SC-WACCM(daily) 0.15 Short Pressure (hPa) (hPa) Wave -0.05 Heating 300 -0.1 Month Month e) Temperature: WACCM minus SC-WACCM(monthly) f) Temperature: WACCM minus SC-WACCM(daily) (hPa) Pressure (hPa) ⊡ H **Temperature** 30

Impact on Surface Climate Trends

DJF Zonal Mean Wind at 867hPa

DJF Zonal Mean Precipitation

Summary

- SC-WACCM's climatology in the troposphere and stratosphere are indistinguishable from WACCM.
- 1/2 Cost Of WACCM (with Chemistry)
- Temporal smoothing of the specified ozone forcing file leads to significant changes in southern hemispheric trends from 1955 to 2005.

Back Up Slides and Extra Info

SC-WACCM (1850) Ozone

Annual Short-Wave Heating Rate Differences

WACCM

Annual Short-Wave Heating Rate Differences

WACCM

Ozone has a diurnal cycle in WACCM but not SC-WACCM

Instantaneous zonal profile of ozone (ppmv) for a day in January at the equator, at 60km, and at 12 midnight 0E. Solid in WACCM ozone and dashed is SC-WACCM ozone (*Sassi and Garcia, 2005*).

Annual Short-Wave Heating Rate Differences WACCM WACCM minus SC-WACCM SC-WACCM (%)

Interpolation of monthly QRS onto model time-step causes seasonal biases

Surface climate

Surface Climate

Surface Climate

	Model	SAT(K)	$P(mmday^{-1})$	SLP(hPa)	$SIE(10^6 km^2)$
Global	WACCM	286.8 (0.2)	2.83 (0.03)	1011.3 (0.05)	-
	SC-WACCM	286.7(0.2)	2.83(0.03)	1011.4 (0.05)	_
	CCSM4	286.5(0.2)	2.93(0.02)	1011.2 (0.04)	_
21° - 90° N	WACCM	281.1 (0.3)	2.00 (0.04)	1016.9 (0.4)	14.0 (0.6)
	SC-WACCM	281.0 (0.3)	1.99(0.05)	1016.9(0.4)	14.0 (0.5)
	CCSM4	281.0 (0.3)	2.13(0.04)	1014.9 (0.5)	13.3 (0.5)
$21^{\circ}\text{S-}21^{\circ}\text{N}$	WACCM	298.2(0.4)	4.10 (0.08)	1010.6 (0.4)	_
	SC-WACCM	298.2 (0.5)	4.10 (0.08)	1010.7 (0.4)	_
_	CCSM4	298.2 (0.4)	4.20 (0.07)	$1011.9 \ (0.3)$	-
21° - 90° S	WACCM	279.9(0.2)	2.25(0.04)	1006.6 (0.4)	16.4 (0.9)
	SC-WACCM	279.8(0.2)	2.25(0.04)	1006.5 (0.4)	16.5(0.7)
	CCSM4	279.0 (0.2)	2.33(0.04)	1006.7 (0.4)	20.4 (1.1)

Table 1. WACCM, SC-WACCM and CCSM4 annual mean surface air temperature (SAT), precipitation (P), sea-level pressure (SLP), and sea ice extent (SIE) for preindustrial conditions. Climatological means are calculated over 200 years for WACCM, 195 years for SC-WACCM and 501 years for CCSM4. The 2σ uncertainties in the means are listed in parentheses.

Zonal Mean Temperature Comparison

Zonal Mean Wind Comparison

The residual circulation is also well represented in SC-WACCM

The residual circulation is well represented in SC-WACCM

The tropical water vapor tape recorder

Plots show the deviation in water vapor mixing ratio (ppmv) from the time-mean average profile averaged over 10°N-10°S.

Sudden stratospheric warming (SSW) frequency

Sudden stratospheric warming (SSW) frequency

Polar vortices

SH

NH

DJFM Heat Flux and 10hPa Temperatures

NAO

NINO 3.4

Changes in the Zonal Mean Winds (1995-2005 mean minus 1960-1969 mean)

Change from WACCM Difference

Jet Changes and Temperature

