Stratospheric Aerosols in SD-CAM5/CARMA

Pengfei Yu and Owen Brian Toon

ATOC, LASP, University of Colorado at Boulder
June.2014, Breckenridge

SD-CAM5/CARMA has similar vertical resolution around UTLS compared with WACCM

CARMA	Default Modal	Bulk
$\mathrm{H} 2 \mathrm{SO} 4+\mathrm{hv}->\mathrm{SO} 3+\mathrm{H} 2 \mathrm{O}$		
SO2 + hv -> SO + 0		
$\mathrm{SO} 3+\mathrm{hv}$-> SO2 + 0		
OCS +hv -> S + CO		
SO + hv ->S + 0		
$\begin{aligned} & \mathrm{DMS}+\mathrm{OH}->.5 * \mathrm{SO} 2+.5 \text { * } \\ & \mathrm{HO2} \end{aligned}$	$\begin{aligned} & \mathrm{DMS}+\mathrm{OH}->\mathrm{SO} ; \\ & \mathrm{DMS}+\mathrm{OH}->.5 \text { * } \mathrm{SO} 2+.5 * \\ & \mathrm{HO2} \end{aligned}$	$\mathrm{DMS}+\mathrm{OH} \text {--> a*SO2 + (1- }$ a) ${ }^{*}$ MSA
DMS + NO3 -> SO2 + HNO3	DMS + NO3 -> SO2 + HNO3	DMS + NO3 --> SO2
$\mathrm{OCS}+\mathrm{O}-\mathrm{SO}+\mathrm{CO}$	SO2 + OH -> H2SO4	$\mathrm{SO} 2+\mathrm{OH}+\mathrm{M}$--> SO4 + M
$\mathrm{OCS}+\mathrm{OH}->\mathrm{SO} 2+\mathrm{C}+\mathrm{H}$		
$\mathrm{S}+\mathrm{OH} \rightarrow \mathrm{SO}+\mathrm{H}$		
$\mathrm{S}+\mathrm{O2}->\mathrm{SO}+\mathrm{O}$		
$\mathrm{S}+\mathrm{O}->\mathrm{SO}+02$		
$\mathrm{SO}+\mathrm{OH}-\mathrm{SO} 2+\mathrm{H}^{\text {a }}$		
$\mathrm{SO}+\mathrm{O} 2-\mathrm{SO} 2+\mathrm{O}$		
$\mathrm{SO}+\mathrm{O} 3->\mathrm{SO} 2+02$		
$\mathrm{SO}+\mathrm{NO2}->\mathrm{SO2}+\mathrm{NO}$		
$\mathrm{SO2}+\mathrm{OH}+\mathrm{M}->\mathrm{HSO} 3+\mathrm{M}$		
HSO3 + $\mathrm{O} 2->\mathrm{SO} 3+\mathrm{HO} 2$		
SO3 + H2O -> H2SO4		
$\mathrm{S}(\mathrm{IV})+\mathrm{H} 2 \mathrm{O} 2$--> SO4	$\mathrm{S}(\mathrm{IV})+\mathrm{H} 2 \mathrm{O} 2$--> SO4	$\mathrm{S}(\mathrm{IV})+\mathrm{H} 2 \mathrm{O} 2$--> SO4
$\mathrm{S}(\mathrm{IV})+\mathrm{O} 3 \quad-\mathrm{SO}$	$\mathrm{S}(\mathrm{IV})+\mathrm{O} 3--\mathrm{SO} 4$	$\mathrm{S}(\mathrm{IV})+\mathrm{O} 3--\mathrm{SO}$

Sulfur

 Chemistry in CAM5/CARMA is developed by Mike Mills
We are interested in:

- Aerosol composition in UTLS and above: Sulfate \approx Organics @ UTLS
- Aerosol properties in UTLS and above Size distribution, Effective Radius

CARMA is sectional model

Model Captures Aerosol Optical Depth distribution

Global AOD Averaged from 2009 to 2011

SEAC4RS happens in Southeast US: Aug-Sep, 2013

Model captures SO_{4} in troposphere

Model captures OC in troposphere

Sulfate mass fraction

Organics mass fraction at multiple pressure levels

OC \approx SULF @ UTLS by simulation

Latitude -15 to 15

Model matches aerosol number in mid-latitude, while underestimates number in tropics

Wet Effective Radius of Sulfate

CESM has problem with SO2 in Stratosphere?

CESM has problem with SO2 in Stratosphere?

Conclusions

- CARMA is a Sectional aerosol model coupled with CAM5;
- CARMA can be easily coupled with WACCM as well;
- At UTLS, sulfate mass \approx organics mass; above UTLS, sulfate dominates;
- Sulfate effective radius is roughly 0.1~0.18 um in stratosphere;
- Mixed particle effective radius is roughly 0.16 um in UTLS;
- CESM might have problem with SO2 in stratosphere, but with lots of uncertainties in observation.

