Photo by Alan Robock

Evaluating the PSC microphysical formation and denitrification over 2010-2011 winter using SD-WACCM/CARMA model

CESM workshop 2014.6.

Yunqian Zhu¹, Owen Brian Toon¹, Douglas Kinnison², Alyn Lambert³, Matthias Brakebusch¹ 1. ATOC & LASP at Univ. of Colorado; 2. NCAR; 3. JPL

What are PSCs and what do they do?

How do we present PSCs in the model

The **source** and sink terms that influence the HNO₃ abundance

The NAT nucleation probability describes what fraction of STS nucleates into NAT in a model time step (30min). It is as a function of temperature and HNO3 mole fraction of the STS particles [Tabazadeh, 2002].

The NAT nucleation probability describes what fraction of STS nucleates

into NAT in a model time step (30min). It is as a function of temperature and particles [Tabazadeh, 2002].

The NAT nucleation probability describes what fraction of STS nucleates

into NAT in a model time step (30min). It is as a function of temperature and particles [Tabazadeh, 2002].

The NAT nucleation probability describes what fraction of STS nucleates

into NAT in a model time step (30min). It is as a function of temperature and particles [Tabazadeh, 2002].

The NAT nucleation probability describes what fraction of STS nucleates

into NAT in a model time step (30min). It is as a function of temperature and particles [Tabazadeh, 2002].

The Model shows a faster falling of HNO₃ than MLS observation. The model doesn't show a PSC formation on 550K on late February as MLS does.

MLS gas

The model captures the locations of STS and NAT; and shows the same magnitude of backscattering ratio as CALIPSO does.

CALISPO data from 22km and model output at 26 mbar (about 22 km) on Jan 03, 2011

The model predicts the chemicals very close to MLS observations. The model underestimates about 15% of the Ozone depletion.

Conclusion

- * By tuning the NAT nucleation rate, the model case Slopeflat predicts HNO3 evolution as MLS observes.
- * The contour plot shows NAT particles fall faster in the lower level (~450K) in the model than the MLS data.
- The backscattering ratio and PSC compositions from CALIPSO observations match the model results.
- * The model predicts the ozone chemicals very close to MLS observations on those PSC formation levels.

Future work

- * To finish the exploration on this winter, we still need to find out a better NAT scheme to have a slower falling of NAT.
- * Next step, we will focus on the Antarctic PSC simulation and its ozone effect.

Yunqian 2013. 6.

