Community Earth System Model

Representation of CESM CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

Authors: Simone Tilmes, Louisa Emmons, Jean-Francois Lamarque, Doug Kinnison, Dan Marsh, Rolando Garcia, Anne Smith, Andrew Conley, Ryan Neely, Maria ValMartin, Francis Vitt, Gary Strand (CMORIZING) Contributions: Sarah Monks, Lili Xia, Claire Granier, Katarina Sindelarova, Thierno

Doumbia, Peter Hess, Tracy Sun

Overview

- CCMI introduction
- CESM model simulations
- Performance of CESM CAM4-chem (WACCM)
- Other ongoing work using the CESM-CCMI version (GeoMIP)

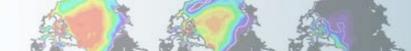
IGAC/SPARC Chemistry-Climate Model Initiative ccm

Evaluation of chemistry and climate in troposphere and stratosphere

Following CCMVal (focused on UTLS and Stratosphere)

CCMI reference experiments:

- REFC1: 1960-2010 (prescribed SSTs), 26L vertical resolution
- REFC1SD: 1980-2010 (specified dynamics), 56L vertical resolution
- climate run RCP6.0: REFC2: 1960-2100, vertical resolution

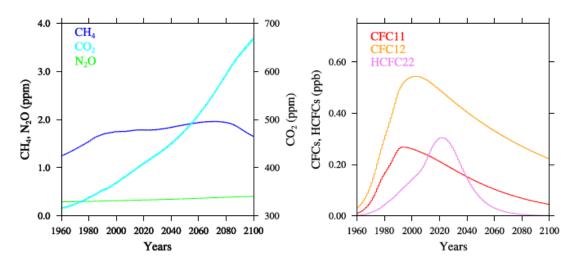

Various sensitivity experiments

CESM1.1.1. with updates (1.9x2.5deg horiz.res.), FV

CAM4chem and WACCM with full tropospheric and stratospheric chemistry

- Bug fixes
- New volcanic heating rates calculation
- Updated chemical mechanism (JPL2010), 2-step SOA calculation
- New polar stratospheric chemistry (WACCM only)
- Updated dry deposition velocities, and wet deposition (Neu scheme)
- New gravity waves, all run with TMS and prescribed QBO (REFC1/REFC2)
- -> updates are going to be all in the next model release

Community Earth System Model



Status of CAM4-chem experiments

Simulation: CESM1.1.1 plus updates, 2deg	Status	How many ensemble members?	Run by:
REF-C1	Finished on ESG	3 members	NCAR
REF-C1SD	Finished, on ESG	1 member	NCAR
REF-C2 (RCP 6.0)	Re-run	3 members	NCAR
SEN-C1SD-fEmis	Finished (glade)	1 member	NCAR
SEN-C1SD-fEmis fCH4	Finished (glade)	1 member	NCAR
SEN-C1SD-fEmis vMEG	Finished (glade)	1 member	NCAR
REF-C2 (RCP 6.0) 1deg	2005-2090	3 members	Rutgers
G4SSA (RCP 6.0) 1deg	2020-2090	3 members	Rutgers
REF-C2 2000fEmis	In progress		Cornell
REF-C2 2100fEmis	In progress		Cornell
REF-C1 SD 0.5deg	In progress (2008)		NCAR
HTAP experiments	In progress		NCAR/IASS/Leeds

Climate Response of CAM4-chem in RCP6.0

Lower Boundary Conditions, RCP6.0

Surface Temperature Change to 1995-2005

REFC1SD	REFC2 runs
REFC1	will be
REFC2	updated

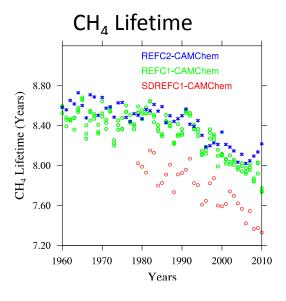
REFC1SD REFC1 (MACCity) **REFC2** (AR5) CO NOx SO2 NH3 NH₃ Tg/yr 120 rog 100 ro NO_X Tg/yr CO Tg/yr 30 -30 -years years years years 9.0 **VOC**_{bio} VOC BC 8.0 VOC_{bio} Tg/yr VOC Tg/yr BC Tg/yr 7.0 6.0 5.0 4.0 years years years

Surface Emission (1960-2010)

REFC1SD REFC1 REFC2

General Performance of the Model

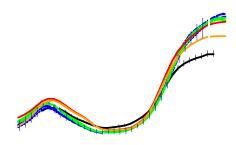
Tropical Averages 30S-30N


Column trop. O_3

SAD

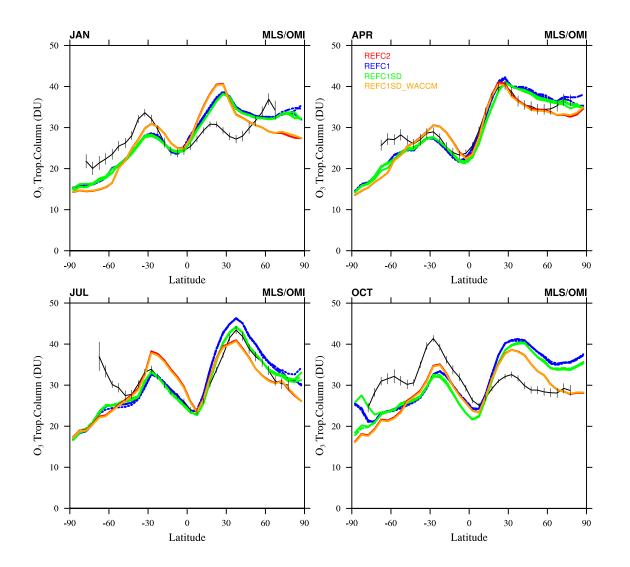
Column NOx

Column CO


Column strat. O_3

REFC1SD REFC1 Present-day (2004-2010) Ozone REFC2 Comparison to OMI/MLS Observations

Total Column


Model - Data

- Total column ozone is represented close to observed values for all the runs.
- Overestimation in high NH latitudes especially in spring.
- Specified Dynamics simulations show a high bias in the midlatitude UTLS region.
- WACCM nudged to same meteorology but better agreement in high latitudes
- -> points to problems in transport and/or mixing

REFC1SD
REFC1Present-day (2004-2010) OzoneREFC2
WACCM SDComparison to OMI/MLS Observations

Tropospheric ozone column

- Very good agreement in spring and summer
- Overestimation in fall/winter in the NH, underestimation in the SH
- More ozone in the SD runs in the Tropics
- More ozone in free running experiments in NH high latitudes

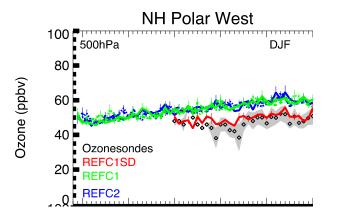
Comparison to Ozonesonde Observations

500hPa

Tropics

REFC1SD_WACCM REFC1SD REFC1 Mid La

REFC2

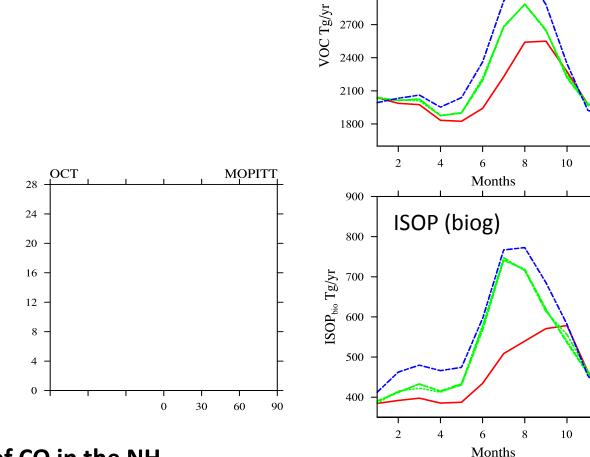

Mid Latitudes

High Latitudes

1 NH Sub-Tropics 2 W-Pac/E-Indian Ocn. 3 Atlantic/Africa 1 West Europe 2 East US 3 Japan 4 SH Mid-lat 1 NH Polar West 2 NH Polar East 3 Canada 4 SH Polar

250hPa

REFC1SD REFC1 REFC2 Comparison to Ozonesonde Observations



- Very nice agreement with observations for REFC1SD, not quite simulating dips in ozone after volcanic eruptions
- Overestimation in REFC1/REFC2 is linked to too much strat/trop exchange

REFC1SD REFC1 REFC2 Comparison to Ozonesonde Observations

Some regions, e.g. Japan, show disagreement in magnitude and trend
-> possible underestimation of inflow from Asian emissions (chemistry and aerosols)

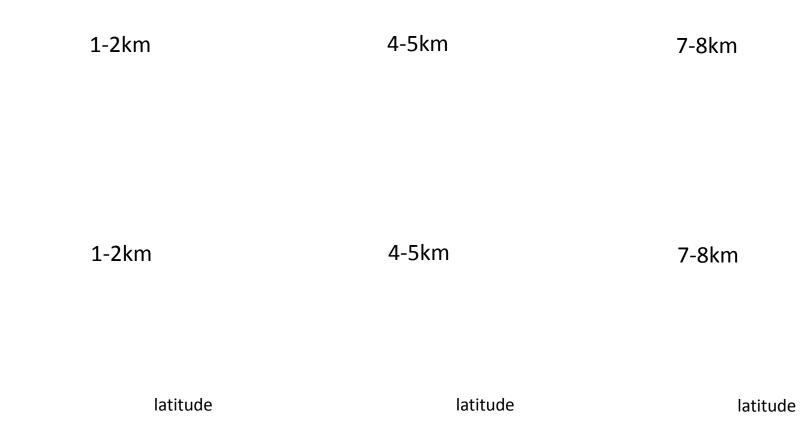
REFC1SD REFC1 Comparison to MOPITT Carbon Monoxide REFC2 2004-2010 Average WACCM SD Surface Emissions

VOC

12

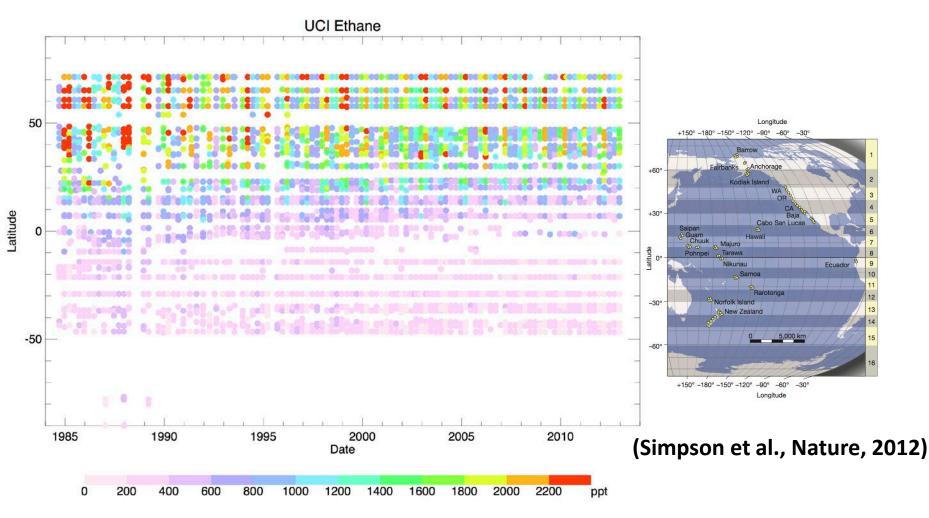
12

3000


-> Underestimation of CO in the NH

A contraction of the second se

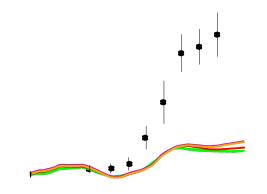
-> Importance of biogenic emissions especially in summer and fall


Comparison to HIPPO Carbon Monoxide

REFC1SD2005-2010 Average over the PacificREFC1

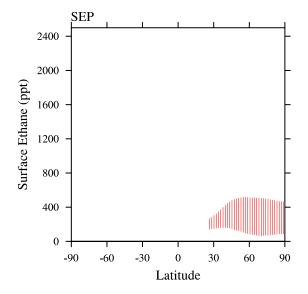
Support findings from satellite comparisons for remote regions

Ethane (and other Hydrocarbons) from canister samples at coastal sites around the Pacific



UCI samples each March, June, Sept, Dec.

REFC1SD REFC1 REFC2 REFC1SD_vMEG


Comparison to UCI Surface Ethane

1995-2010 Average

Significant underestimation of Hydrocarbons in the Northern Hemisphere, example Ethane at the surface.

-> strong underestimation of emissions

REFC1SD Comparison to HIPPO Black Carbon

2005-2010 Average over the Pacific

Spring:

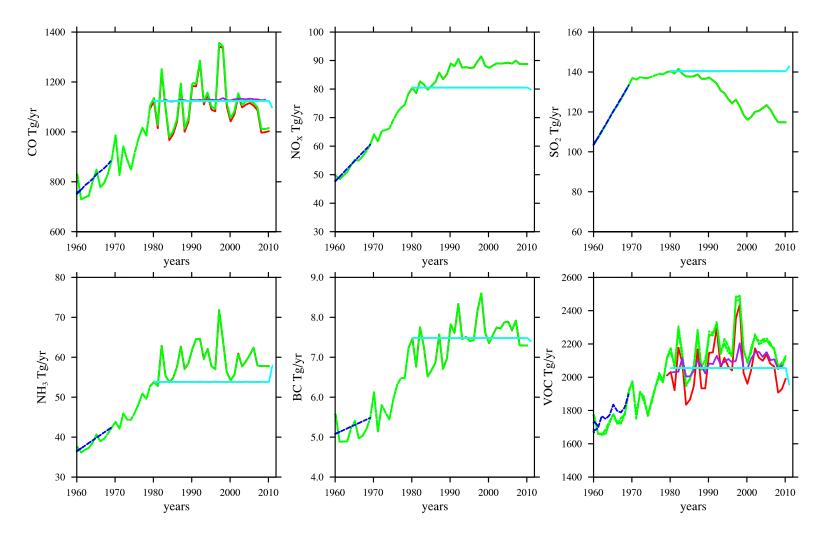
- underestimation of BC in high Northern Latitudes (fire plumes)
- overestimation in the SH

Summer:

- good agreement in NH
- overestimation of BC in SH

Fall/Winter:

- overestimation in the NH
- good agreement in the SH
- Overestimation in the Tropics


-> seasonality not captured correctly

Conclusions

- Very good performance of tropospheric ozone in comparison to observations, but
 - REFC1/REFC2 too high in the tropospheric high latitudes
 - -> too much Srat/Trop Exchange in REFC1/REFC2 in the NH high latitudes
 - REFC1SD: LMS ozone too high, more ozone in the tropics
 - -> impacts methane lifetime
 - -> impact of pollution in Japan not captured
 - -> transport and dynamics need to be further investigated
- CO underestimated especially in spring
 - Biogenic emissions in REFC1/REFC2 result in an increase of CO in summer and fall (warmer T and more clouds in REFC1)
- Methane lifetime is rather low in REFC1SD
- HC too low in general, wrong seasonality
- Black Carbon over the Pacific: overestimation in winter NH and SH may point to problems in sources and removal
- PAN still too high, H₂O very good (not shown)

Sensitivity Simulations, REFC1SD Surface Emission (1960-2010)

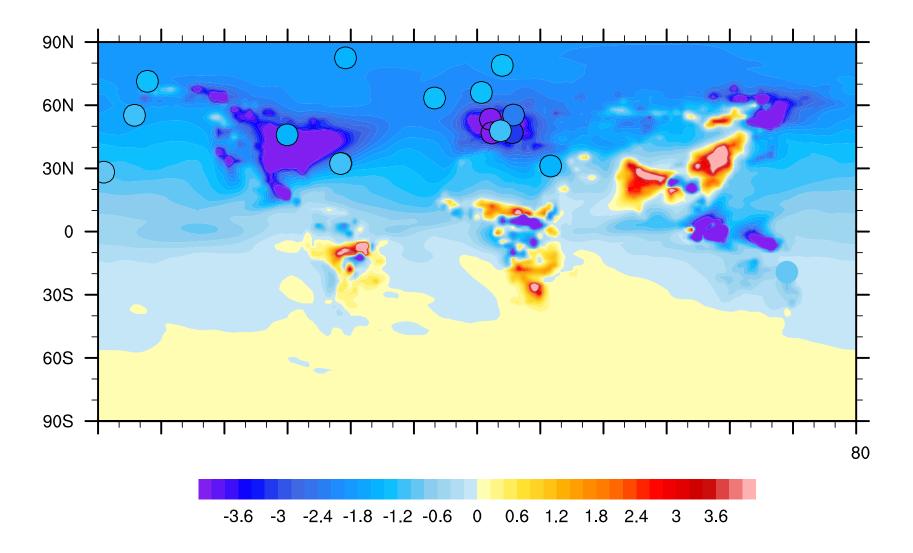
REFC1, REFC1SD_fEmis, REFC1SD_fEmis_vMEG, REFC1SD_fEmis_fCH4

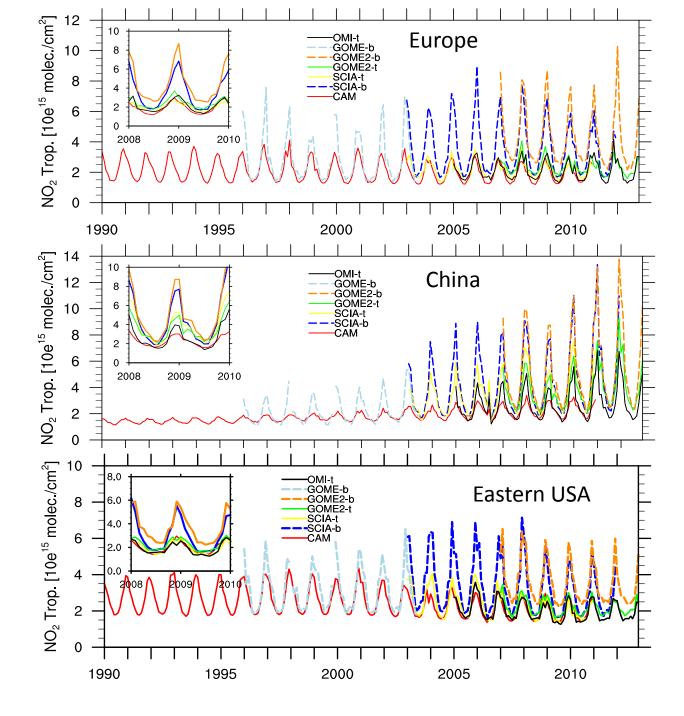
Comparison to MOPITT Carbon Monoxide

2004-2010 Average

Plus Sensitivity Experiments:

CO emissions about same NO_x emissions lower -> Ozone only slightly lower


Sulfate higher


- -> SAD higher
- -> reduced OH,
- -> longer CH4-lifetime

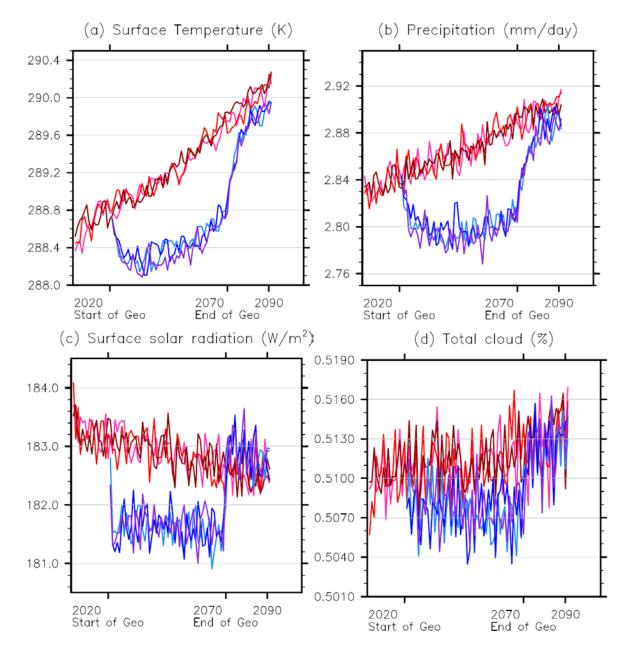
Points to the importance of OH burden and the connections to aerosols!

Work by: Claire Granier, Katarina Sindelarova, Thierno Doumbia

Temporal changes of simulations using WDCGG surface CO

Comparison of CAM4-Chem simulations With several satellite observations of the NO_2 tropospheric column, as well as different retrievals of the same instrument

CAM4-Chem simulations = red line


Additional Studies: GeoMIP G4SSA by Lili Xia

Prescribed stratospheric aerosol distribution

CESM CAM4chem: 1deg Off-line post4.5CLM-crop, 2deg

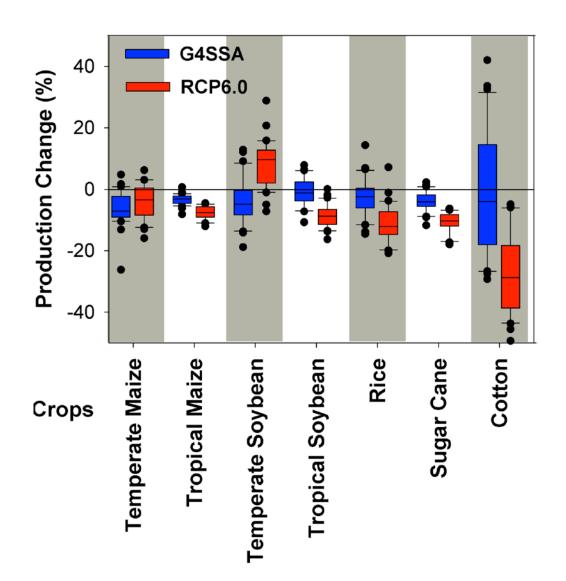
- Fixed CO2 (392ppm), fertilizer/irrigation (year 2000)
- CLM-crop control run: AgMERRA reanalysis data 1978-2012
- Climate model control run: RCP6.0 2004-2010
- RCP6.0 monthly anomalies and G4SSA monthly anomalies (2060-2069)
- Perturb 35 years AgMERRA with each year of RCP6.0/G4SSA climate anomalies

GeoMIP G4SSA

CESM-CAM4-chem 1 degree

Global average of annual

- (a) Temperature
- (b) Precipitation
- (c) Solar radiation
- (d) Total cloud


RCP6.0 Three reddish lines (2004-2089)

G4SSA Three bluish lines (2020-2089)

Xia et al., in preparation

Climate Impact of Climate change and Geoengineering on Crops

From one crop model – CLM-crop, G4SSA reduces the damage from **RCP6.0** for tropical maize, tropical soybean, rice, sugar cane and cotton. While it decreases the productions of temperate maize and temperate soybean.

Impact of changes in chemistry (CO_2, O_3) are not included here