A trait-based plant hydraulics scheme for water stress in CLM(ED)

Brad Christoffersen, LANL

Chonggang Xu, Manuel Gloor, Maurizio Mencuccini, Sophie Fauset, Nikolaos Fyllas, David Galbraith, Lucy Rowland, Sanna Sevanto, Rosie Fisher, Nate McDowell, & Patrick Meir

CESM Workshop Breckenridge, CO 17 June 2015

Motivation for the Trait-Based, Size-Structured Approach

Why plant hydraulics?

- BTRAN primarily informed by soils
- Poorly captures drought experiment data

Powell et al. 2013 New Phyt

Motivation for the Trait-Based, Size-Structured Approach

- Why traits?
 - Large differences among individuals, even within the same PFT

Zhu et al. 2013 PCE

Motivation for the Trait-Based, Size-Structured Approach

• Why CLM(ED)?

- Size-structured (potential for height effects on mortality)
- Prevents all-or-nothing mortality response

Nepstad et al. (2007) Ecology

(* = required)

Bonan et al. (2014) GMD

(* = required)

(* = required)

Hydraulic	Hydraulic	Variable	Tissue water
gradients	effects on	plant	content
*	stomata*	conductivity	(mass balance)

(* = required)

Lopez et al. (2005) Tree Phys

(* = required)

replotted from Tyree et al. (1991) Plant Phys

Model type	Hydraulic	Hydraulic	Variable	Tissue water	Reference(s)
	gradients	effects on	plant	content	
		stomata	conductivity	(mass balance)	

Model type	Hydraulic gradients	Hydraulic effects on stomata	Variable plant conductivity	Tissue water content (mass balance)	Reference(s)
β (BTRAN)	-	-	-	-	Feddes et al. (1978)
SPA-type	1	Isohydric A/gs or A/E	-	implicit	Williams et al. (1996)
Hickler-type (LPJ)	1	Isohydric	1	implicit	Hickler et al. (2006)
Sperry-type	1	- (E _{crit})	1	explicit	Sperry et al. (1998)

Model type	Hydraulic gradients	Hydraulic effects on stomata	Variable plant conductivity	Tissue water content (mass balance)	Reference(s)
β (BTRAN)	-	-	-	-	Feddes et al. (1978)
SPA-type	1	Isohydric A/gs or A/E	-	implicit	Williams et al. (1996)
Hickler-type (LPJ)	1	Isohydric	1	implicit	Hickler et al. (2006)
Sperry-type	1	- (E _{crit})	1	explicit	Sperry et al. (1998)
In development (Columbia U)	1	continuum of strategies	✓	explicit	Kennedy & Gentine (in prep)

Model type	Hydraulic gradients	Hydraulic effects on stomata	Variable plant conductivity	Tissue water content (mass balance)	Reference(s)
β (BTRAN)	-	-	-	-	Feddes et al. (1978)
SPA-type	1	Isohydric A/gs or A/E	-	implicit	Williams et al. (1996)
Hickler-type (LPJ)	1	Isohydric	1	implicit	Hickler et al. (2006)
Sperry-type	1	- (E _{crit})	1	explicit	Sperry et al. (1998)
In development (Columbia U)	1	continuum of strategies	✓	explicit	Kennedy & Gentine (in prep)
This model	1	continuum of strategies	1	explicit	Christoffersen et al. in prep

* = updated or improved from Sperry model

OLD

OLD

• ψ_c :

- soil water potential at stomatal closure

- ψ_o :
 - soil water potential at beginning of stomatal closure
- ψ_i :
 - soil water potential
- Dependent on PFT, soil properties, and soil moisture only

OLD

• ψ_c :

soil water potential at stomatal closure

- ψ_o :
 - soil water potential at beginning of stomatal closure
- ψ_i :
 - soil water potential
- Dependent on PFT, soil properties, and soil moisture only

- ψ_{leaf} is a function of:
 - Atmospheric demand
 - Light environment
 - Water supply
 - Plant height
 - Plant traits: conductance, P50, turgor loss point
 - \rightarrow Integrated measure of **EVERYTHING**

OLD

 ψ_c :

soil water potential at stomatal closure

- ψ_{o} :
 - soil water potential at beginning of stomatal closure
- ψ_i :
 - soil water potential
- Dependent on PFT, soil properties, and soil moisture only

NEW

- ψ_{leaf} is a function of:
 - Atmospheric demand
 - Light environment
 - Water supply
 - Plant height
 - Plant traits: conductance, P50, turgor loss point
 - Integrated measure of EVERYTHING \rightarrow
 - $P_{g_{12}}$: ψ_{leaf} where g_s is 12% of the maximum
 - Degree of safety
 - Isohydry $\leftarrow \rightarrow$ Anisohydry continuum

Richards' Numerical Solution

- Option 1: Water potential (ψ)-based solution: iteration necessary (potentially computationally expensive)
- Option 2: Water mass (θ)-based solution: no iteration needed* (as in CLM SoilHydrologyMod)

– Linearize (1st order Taylor expansion) about $\partial \theta$

* Iterative timestep reduction if water budget not balanced (Ross 2003)

Hydraulic Scheme Testbed: Trait Forest Simulator (TFS)

(Fyllas et al. 2014 GMD)

Hydraulic Scheme Testbed: Trait Forest Simulator (TFS)

(Fyllas et al. 2014 GMD)

Individual tree model

- DBH, height, sapwood, crown allometry

Hydraulic Scheme Testbed: Trait Forest Simulator (TFS)

(Fyllas et al. 2014 GMD)

• Light competition/tessellation

- Spatially implicit (computationally tractable)

Purves et al. (2007) PLoS One; Bohlman & Pacala (2012) J Ecol

Hydraulic Scheme Testbed: Trait Forest Simulator (TFS) (Fyllas et al. 2014 GMD)

• 4 traits: wood density, leaf mass per area, leaf nitrogen, leaf phosphorus

Hydraulic Scheme Testbed: Trait Forest Simulator (TFS) (Fyllas et al. 2014 GMD)

• Similar to CLM(ED), except:

- Individual-, not cohort-based
- Trait distributions, not successional stages
- Some differences in canopy biophysics

ARE TRAITS USEFUL? PARAMETERIZING HYDRAULICS SCHEME

Tapajos National Forest, Brazil Photo: B. Christoffersen

Christoffersen et al. in prep

Mechanistic parameters describing a PV curve:

Christoffersen et al. in prep

Yes! WD explains coordinated variation among sapwood PV params in the tropics

** = p < 0.01, * = p < 0.05 excluding subtropical data

Resultant parameter inputs to hydraulics scheme

Resultant parameter inputs to hydraulics scheme

Meta-analysis used to parameterize rest of model (tropics focus)

INPUT TRAITS

INITIAL RESULTS: MODEL DYNAMICS

Tapajos National Forest, Brazil Photo: B. Christoffersen

1-year simulation, 60cm DBH individual tree in Eastern Amazon (Caxiuana)

1-year simulation, 60cm DBH individual tree in Eastern Amazon (Caxiuana)

1-year simulation, 60cm DBH individual tree in Eastern Amazon (Caxiuana)

1-year simulation, 60cm DBH individual tree in Eastern Amazon (Caxiuana)

Model captures height-related trends in leaf water status (1-yr simulation, Caxiuana)

Evolution of Hydraulic Failure under simulated drought

INITIAL ED(X) IMPLEMENTATION

ED(X) new hydraulic failure model

ED(X) Model simulations against data at Seviletta LTER site

Days from Jan 1,2007

ED(X) mortality evaluations against data at Seviletta LTER site

McDowell et al. 2013

Summary

• Hydraulics Scheme:

- Dynamic plant conductance \rightarrow hydraulic failure
- Stomata: continuum of strategies (no $\psi_{leaf_{min}}$)
- Efficient mass-based numerical solution
- Stand-alone module for CLM(ED)
- Traits:
 - WD is useful predictor for hydraulic parameters
- Hydraulic-Induced mortality:
 - **Emergent** as catastrophic decline in *K_i* **anywhere** in the continuum
- Trait-based plant hydraulics modeling increases functional diversity in ESMs