QLﬁo?c. Alamos @CME

NATIONAL LABORATORY Accelerated Climate Modeling

MPAS-Ocean Update ™

MPAS-Ocean Team

Mark Petersen, Todd Ringler, Douglas Jacobsen, Mathew Maltrud,
Phil Jones, Xylar Asay-Davis, Phillip Wolfram, Juan Saenz, David Lee

Los Alamos National Laboratory




MPAS-Ocean: Progress in 2014-2015

m MPAS release 4.0

Gent-McWilliams Parameterization
KPP vertical mixing within CVMix

Multiple 1/0O streams: run-time specification of write frequency and variables
= In-Situ Analysis and Initial Conditions

m  Spin-up of new standard meshes
Low-resolution (EC 60-30 km)
High-resolution (RRS 15-5 km)

|dealized Southern Ocean Configuration
m Residual-Mean prognostic framework
= In-Situ Lagrangian Particles
s  CDG high-order advection scheme

= Land-ice/ocean coupling
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In-Situ Analysis

Problem: Our ability to produce data is outstripping our ability to
manipulate and analyze this data.

Solution: Analysis tools fully integrated into the model

= Analysis members:

Global, zonal, and regional statistics

Volumetric T/S census

Meridional heat transport

Eddy diagnostics and census (Woodring et al. 2015)
Lagrangian particles (Wolfram et al. JPO 2015)
Eliassen-Palm Flux Tensor

= Available in forward mode (in-situ) and analysis mode (post-processing)
m Each analysis member is a separate module, begun from a template.
m Easy for MPAS users to contribute analysis tools back to released code

= New multiple I/O streams: run-time specification of write frequency and
variables.

=  Publication in press: Woodring, J., M. Petersen, A. Schmeisser, J. Patchett, J. Ahrens,
In Situ Eddy Analysis in a High-Resolution Ocean Climate Model, SciVis 2015
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Low Resolution Mesh: EC 60-30 km

m EC: requires Eddy Closure, i.e. GM is on.

m 234Kk horizontal cells: compare to
POP 1 degree (86k cells)

Grid spacing (km)

m 100 vertical levels, z-star coordinate

m  CORE-Il six-hourly forcing underway
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High Resolution Mesh: RRS 15-5 km

= RRS: Rossby Radius Scaling , Grid cell size

= 5.8M horizontal cells, 100 levels.
Compare to POP 0.1 degree (5.4M cells)

s Ocean-only spin-up underway
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Grid spacing (km)

Southern Ocean-Enhanced Mesh
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Captures eddy dynamics of Southern
ocean without eddy closure scheme.

May include refined embayments for
sub-ice shelf dynamics

Collaboration with NCAR (B. Large,

SCIDAC) to analyze and remedy
biases in Southern Ocean uptake.

In planning stages
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Parameterizing eddies in a residual-mean prognostic framework

Saenz, J.A., Q. Chen, T.D. Ringler, In Press: Prognostic residual-mean flow in an ocean general
circulation model and its relation to prognostic Eulerian-mean flow. J. Phys. Oceanogr.
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An l|dealized configuration of the Southern Ocean

To investigate eddy-mean flow Kinetic Energy
interaction with E-P flux tensor z = -240m; t ~ 200 yrs
« Lateral restoring leads to a N2(z) 16-09 1,608

that produces a 1st Rossby
radius of deformation of 12 km.
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 Lateral restoring independent of
longitude.

« Embayments/shelf for the
creation and study of “AABW”
creation and fate. Temperature
restored to -1°C.

* Imposed wind stresses and heat
fluxes over main channel.

* Provides stepping stone to
simulations including static ice
shelves and utilizing ~1 km
resolution in embayments.

RRS.60-20km

Wednesday, June 10, 15

Slide 8



LIGHT: A tool for understanding mesoscale mixing

Lagrangian In-situ, Global, High-performance particle Tracking

= In-situ particle tracking with native spatial and temporal resolution
= High-performance (same number of particles as cells)
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LIGHT: A tool for understanding mesoscale mixing

Lagrangian In-situ, Global, High-performance particle Tracking

= In-situ particle tracking with native spatial and temporal resolution
= High-performance (same number of particles as cells)

2 = Scientific application: Diffusivity calculation

log,gkic (m*s™'), p=1026.9 kg m™*

U — = Cluster statistics in double-gyre basin
PNy N = Potential density constrained
(isopycnal)

See poster OMWG-8
by Phillip Wolfram
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Diffusivities estimated with

LIGHT cluster of particles at four
simulation resolutions, from eddy
permitting to eddy resolving.
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High Order Tracer Advection

Characteristic Discontinuous Galerkin (CDG)

= New advection scheme for improved scaling with an increasing
number of tracers and relaxed CFL

m Tracer field represented by a high order series of trial functions in each
cell, k, = _ n A2
hq(X> t) — Z_/ Ck,j¢J(X7 t)

Error convergence for the CDG and FCT advection schemes
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Each face is traced back in time along
characteristics and the polygon made by See poster OMWG-3

this face and its "pre-image" is integrated by David Lee
to determine the flux through the face. Side 11



Ocean / Land Ice Coupling

« Validating ice-shelf cavities in MPAS-O with ISOMIP
(Ice Shelf-Ocean Model Intercomparison Project)
20 vertical layers, nonlinear EOS, after 20 years ey, |SOMIP melt rate
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= New idealized test cases (MIPs)
designed for a community effort:

o MISMIP+: land ice only

o ISOMIP+: ocean only with
shelf cavities

o MISOMIP1: coupled land
ice-ocean

= Work led by Xylar Asay-Davis Example result from MISOMIP using POP-BISICLES g, 15



Overflow and Entrainment

DOME idealized overflow configuration: Legg et al (2006, 2009)
Study of vertical coordinate, resolution, and vertical viscosity
Vertical grids ranging in thickness from 15 m to 120 m were tested.
Vertical resolution of 60 m are sufficient in this configuration
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Publication: Reckinger, S.M., M.R. Petersen, S.J. Reckinger, A study of overflow simulations
using MPAS-Ocean: vertical grids, resolution, and viscosity, Ocean Modeling, in review Siide 13



MPAS-Ocean: Tasks for coming year

= Working towards ACME V1.0 freeze Nov 1
s  Coupling and testing within ACME

m  CORE-forced and fully coupled simulations on:
Low-resolution mesh (EC 60-30 km)
High-resolution mesh (RRS 15-5 km)

Southern Ocean enhanced mesh

= Evaluation with active MPAS-CICE

m  Biogeochemistry column library within MPAS

m Land-ice/ocean coupling and physics: idealized to realistic
= Initial condition generation

= Additional in-situ analysis
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Multiple run modes

single MPAS-Ocean

executable
7/ I \
/ namelist flag \
init mode forward mode analysis mode

= init mode: Creation of initial conditions, both idealized and realistic
= analysis mode: post-processing analysis, applied to restart files.

= All modes have access to MPAS infrastructure (mesh, i/o, operators)
= All modes fully parallelized and scale like the forward model.

= All code in same repository

= Brings init and analysis under design and peer-review standards
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MPAS-Ocean: Publications in 2014-2015

m Petersen, M.R., D. Jacobsen, T.D. Ringler, M.E. Maltrud, M. Hecht, 2015.
Evaluation of the Arbitrary Langrangian-Eulerian vertical coordinate in the
MPAS-Ocean Model. Ocean Modelling 86, 93-113

m  Saenz, J.A., Q. Chen, T.D. Ringler, Prognostic residual-mean flow in an
ocean general circulation model and its relation to
prognostic Eulerian-mean flow, J. Phys. Oceanography, in Press

m  Wolfram, P.J., T.D. Ringler, M.E. Maltrud, D.W. Jacobsen, M.R. Petersen,
Diagnosing isopycnal diffusivity in an eddying, idealized mid-latitude ocean
basin via Lagrangian In-situ, Global, High-performance patrticle Tracking
(LIGHT), J. Phys. Oceanography, in Press

s Woodring, J., M. Petersen, A. Schmeisser, J. Patchett, J. Ahrens, In Situ
Eddy Analysis in a High-Resolution Ocean Climate Model, SciVis 2015, in

press

m  Reckinger, S.M., M.R. Petersen, S.J. Reckinger, A study of overflow
simulations using MPAS-Ocean: vertical grids, resolution, and viscosity,
Ocean Modeling, in review
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