Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

Office of Science

CLIMATE, OCEAN AND SEA ICE MODELING PROGRAM

Simulating wind redistribution of snow on sea ice

Elizabeth Hunke

June 2015

LA-UR-15-24491

= 900

イロト イポト イヨト イヨト

Snow Influences

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

Sea Ice Dynamics

- mass
- form drag

Sea Ice Thermodynamics

- albedo
- thermal insulation
- melt pond water source
- radiative shield for ponds (infiltration, or on pond ice)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- meltwater flushing, ice salinity
- snow-ice formation

Snow Influences

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

Ocean

- fresh melt water
- energy content
- transmitted shortwave (if it survives through the ice)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Biogeochemistry

- vertical tracer transport
- tracer scavenging during meltwater flushing
- horizontal tracer transport (incl. fresh water)

Snow Model Schematic

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

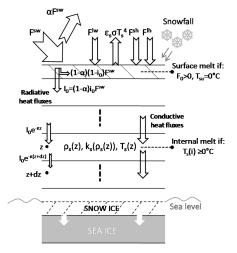


Figure 2.1: Schematic of LIM1D's new snow module.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

O. Lecomte, Ph.D. thesis, Université catholique de Louvain, 2014

A Basic Snow Model

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

- thermodynamic model computes growth/melt rates
- vertical conductive, radiative and turbulent fluxes
- state variables: mass (volume)

energy (temperature, enthalpy)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- assumed density profile, effective thermal conductivity
- salinity = 0 (unless sea water infiltrates)
- mass changes due to
 - snowfall
 - sublimation/deposition
 - melt
 - snow-ice formation
 - loss during ridging

vertical discretization with multiple layers

horizontal advection on top of sea ice

Sturm & Holmgren JGR 200⁻ Recommendations for Climate Modelers

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistributior Tests

Wind Dependence

- Need synoptic weather data to capture discrete storms
- Evolve depth hoar using ∇T , but ...
- Wind slab and depth hoar resist further densification
- Wind slab prevents further snow drifting
- Snow characteristics can be tied to ice type (thin, etc)
- Lateral variability is closely tied to melt pond features
- Snow depth can be treated as a normally distributed random variable with the mean and standard deviation set by ice type

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ACME Snow-on-Sea-Ice Model Development

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

- Increase vertical resolution of the snow column
- Use daily precipitation data to capture discrete storms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Model snow metamorphism (wet and dry)
 - effective snow grain radius
 - mass of liquid water in snow
 - mass of ice in snow
- Model wind effects on snow
 - wind slab
 - loss to leads
 - radiative effects of snow redistribution

ACME Snow-on-Sea-Ice Model Development

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

This talk:

- Increase vertical resolution of the snow column
- Use daily precipitation data to capture discrete storms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Model snow metamorphism (wet and dry)
 - effective snow grain radius
 - mass of liquid water in snow
 - mass of ice in snow

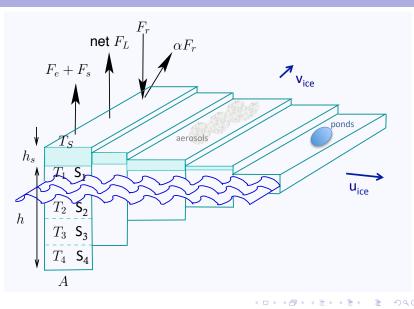
Model wind effects on snow

- wind slab
- loss to leads
- radiative effects of snow redistribution

Resolution

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke


Snow Influences

Basics

Resolution

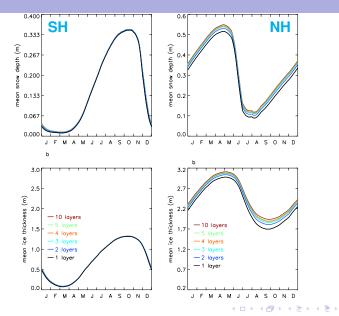
Simple Redistribution Tests

Wind Dependence

Vertical Resolution

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke


Snow Influences

Basics

Resolution

Simple Redistribution Tests

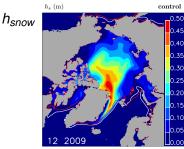
Wind Dependence

E 990

Control Run

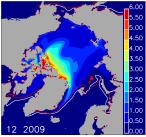
Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke


Snow Influences

Basics

Resolution


Simple Redistribution Tests

Wind Dependence

 h_i (m)

h_{ice}

CICE v5

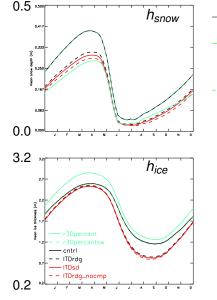
1° global displaced pole grid Modified CORE II forcing Slab mixed-layer ocean Control 1958 – 2009 Experiments 1980 – 2009

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

30% Rule: Loss to Leads / Redistribution

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke


Snow Influence

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

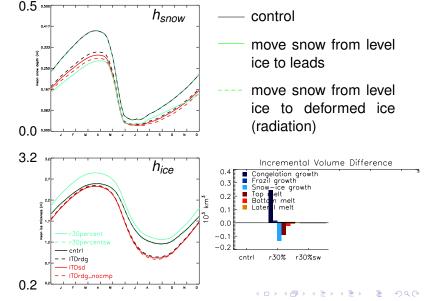
— control

- move snow from level ice to leads
- --- move snow from level ice to deformed ice (radiation)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

30% Rule: Loss to Leads / Redistribution

Elizabeth Hunke


Snow Influence

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

Wind Dependence: LIM

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

- density of new-fallen snow depends on surface wind speed
- some snow is blown into the ocean through leads
- transported snow mass flux is
 - proportional to wind speed
 - negatively proportional to snow density
 - inversely proportional to stddev(ITD)
- conductivity depends on snow density, liquid water content

Wind Dependence: LIM Wind Dependence: CICE

Lecomte 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence density of new-fallen snow depends on surface wind speed for wind redistribution

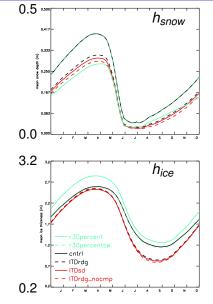
some snow is blown into the ocean through leads

- transported snow mass flux is
 - proportional to wind speed
 - negatively proportional to snow density
 - inversely proportional to stddev(*level+deformed ITD*)
- conductivity depends on snow density, liquid water content

Wind Dependence: CICE

Simulating wind redistribution of snow on sea ice

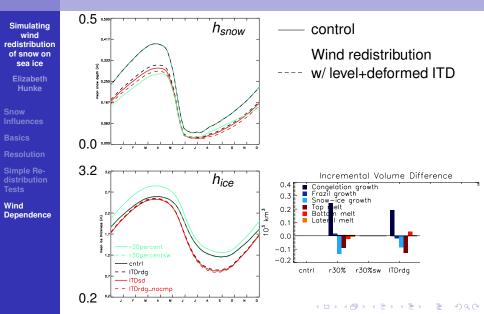
> Elizabeth Hunke


Snow Influence

Basics

Resolution

Simple Redistributior Tests


Wind Dependence

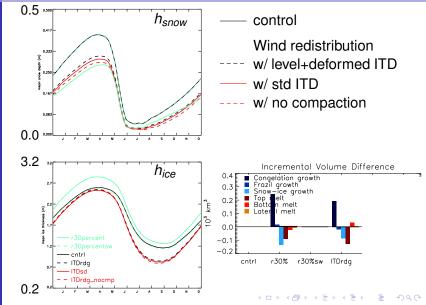
— control
Wind redistribution
-- w/ level+deformed ITD

・ロト・西ト・ヨト・ヨー うへぐ

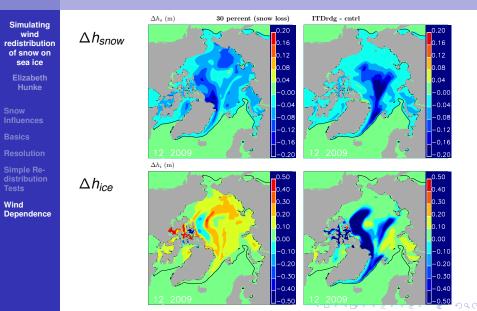
Wind Dependence: CICE

Wind Dependence: CICE

Elizabeth Hunke


Snow Influences

Basics


Resolution

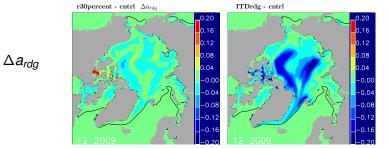
Simple Redistribution Tests

Wind Dependence

Experiments - Control

Change in Deformed Ice Area

Elizabeth Hunke


Snow Influences

Basics

Resolution

Simple Redistribution Tests

Wind Dependence

◆□ > ◆□ > ◆注 > ◆注 > ─ 注 ─

Preliminary Results

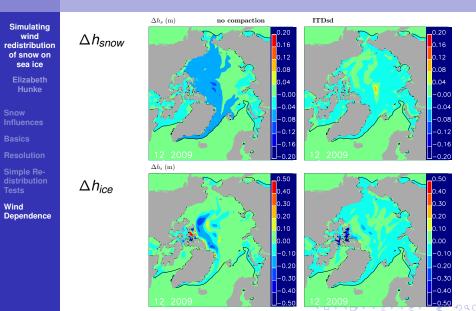
Simulating wind redistribution of snow on sea ice

> Elizabeth Hunke

Snow Influences

Basics

Resolutior


Simple Redistribution Tests

Wind Dependence

- need at least 3 snow layers, preferably more
- snow loss to leads is critical
- feedback with deformed ice needs to be explored
- snow metamorphism likely to have bigger radiative impact
- new developments include varying snow density
- effects of synoptic precipitation need to be explored

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Experiments - ITDrdg

