CSEG Update: Introducing CIME

(Common Infrastructure for

Modeling the Earth)

Mariana Vertenstein mvertens@ucar.edu CESM Software Engineering Group National Center For Atmospheric Research

NCAR is sponsored by the National Science Foundation

Acknowledgements

- CSEG/CGD
 - Ben Andre
 - Alice Bertini
 - Cheryl Craig
 - Tony Craig
 - Brian Eaton
 - Jim Edwards
 - Erik Kluzek
 - Mike Levy
 - Sheri Mickelson
 - Bill Sacks
 - Sean Santos

• ASAP/CISL

- Allison Baker
- John Dennis
- Sheri Mickelson
- Kevin Paul
- Others
 - Dorit Hammerling (CISL)
 - Gary Strand (CGD)

Outline

• What is the CESM Infrastructure? • What is CIME? • What is the current CIME status? • What are upcoming CIME developments?

What is CESM Infrastructure?

In past infrastructure (no IP) tied to science development (has IP)

CIME coupler infrastructure has multiple instance capability – e.g. used for Ensemble Kalman Filter data assimilation (DART)

Coupling with DART is presently file based - CESM stops and DART Modifies the atmosphere initial files and ocean restart files

(1) Driver/Coupler Infrastructure

- Targeted to provide a *flexible way to turn off feedbacks* as part of model development and turn on feedbacks for fully coupled simulations – all with ONE coupling infrastructure
- Agnostic as to whether a coupling component is prognostic, data or stub
- Components communicate with each other only via a hub and spoke architecture

(2) Scripting Infrastructure

- Provides "out-of-the box" case configuration capabilities that allow users to easily turn feedbacks on and off and create experimental configurations with the
 - Target feedbacks enabled
 - Target component grids
 - Target component configurations
- Keeps complexity in the scripts not dependent on the users having expert knowledge of the entire system
- Provides experimental provenance

(3) Other Infrastructure Utilities

- "PIO (parallel IO)
 - used by all components
- Testing framework
 - Unit and system tests
 - Each can be run with one command
- Share code (e.g. data stream capabilities)
- Statistical Ensemble Test
- Mapping utilities
 - Leverages offline ESMF to create grid mapping files in parallel
- Timing utilities
- MCT (Model Coupling Toolkit)

What is CIME? Common Infrastructure for Modeling the Earth

Why CIME?

- Facilitate future infrastructure modernization as a collaborative project (e.g. CESM infrastructure)
- Response to February summit of US Global Change Research Program (USGCRP) / Interagency Group on Integrative Modeling (IGIM) as a positive outcome from the February Summit
 - IGIM is charged with coordinating global change-related modeling activities across the Federal Government and providing guidance to USGCRP on modeling priorities
- Enable separation of infrastructure (no scientific intellectual property) versus scientific development codes (intellectual property that <u>must be protected</u>)
- Eliminate duplication of efforts

Why CIME (cont)

• How can this be accomplished?

- 1. Make ALL CESM infrastructure public
- 2. Make ALL infrastructure development open
- Enable it to have stand-alone capability developed and tested end-to-end as a stand-alone system (independent of prognostic components)

This will facilitate AND encourage

- outside collaboration
- frequent feedback on infrastructure development
- quick problem resolution
- rapid improvement in the productivity, reliability and extensibility of the CIME infrastructure

Old paradigm -

everything in *restricted* developer repository

Infrastructure and all model components Restricted Subversion Repository -

<u>Prognostic Models (CAM, CLM, CICE, etc.)</u> Data Models (DATM, DLND, DICE, etc.) Stub Models (SATM, SLND, SICE, etc.) CPL Test Models (XATM, XLND, XICE, etc.)

Driver-Coupler Code Share Code Scripts System and Unit Testing Mapping Utilities New Post-Processing and Workflow Tools New paradigm – all infrastructure is Open Source

(public read) - IP still in place for prognostic components

CIME Infrastructure can be used to facilitate releases and external collaborations

Infrastructure PUBLIC Open Source Github Repository Collaborator model code Restricted or Public Repositories

ESMF/NUOPC and ACME Collaborations Driver-Coupler Share Code Scripts System/Unit testing Mapping Utilities All Data Models All Stub Models All cpl-test Models

Examples: CESM or ACME or NUOPC-NEMS or RASM (WRF)

What is CIME Status?

CIME Current Status

Stand-alone capability

• CIME can be developed, run and tested "stand-alone" with either all data models or all stub-models or all "test-cpl" models

End-to-end stand-alone development capability

ALL CIME development is in the open

 Updates to CIME are not are not just snapshots of a private repository. CIME developments are fully visible and anyone can grab them at any time.

Consolidation of separate externals

 Each part of CIME was previously developed independently and often led to inconsistencies. Now CIME is a *SINGLE* entity and ensures consistency among its various parts. This simplifies and adds robustness to infrastructure development process

CIME Status (cont)

New unit testing framework

- New unit tests in coupler
- Framework can also be applied to prognostic components
- CMake based one line invocation

Refactored automated system tests

- CIME stand-alone tests accompany CIME
- Tests to turn off feedbacks (i.e. stand-alone CAM, stand-alone CLM, stand-alone POP are now contained in prognostic component directory) – separation of concerns

New workflow capabilities

- Introduction of workflow dependencies
- Short term archiver (movement of model data to local disk for later post-processing) run as a separate job
- More flexible introduction of new machines

Directory Structure for CIME 2 new top level directories

• CIME/ (coupled to prognostic components or stand-alone)

- Driver-Coupler/ (coupler code base)
- Components/data_comps (data model code base)
- Scripts/ (out of the box supported compsets, grids, pes)
- Machines/ (out of the box supported machines, compilers)
- Externals/ (libraries pio, mct, gptl, ...)
- Post processing Diagnostics/

• SRCROOT/

- CESM: components/cam/, components/clm/.....,
- ACME: components/acme-atm, components/acme-Ind/
- NUOPC/HYCOM: components/nuopc-hycom

Paradigm for shared development of CIME ACME/CESM collaboration

CESM gatekeeper controlled: <u>https://github.com/CESM-Development/cime</u>

CESM/ACME/other gatekeeper controlled: <u>https://github.com/ESMCI/cime</u>

What are upcoming CIME additions?

Upcoming additions to CIME

- New parallel IO library PIO2
- Improved statistical ensemble tests to verify ports and model developments that are non climate changing
 - More in Allison Baker's SEWG talk
- New end-to-end workflow capabilities (post-processing capabilities as part of a model run)
 - More in Sheri Mickelson's SEWG talk
- Introduction of new share code libraries
- *"De-CESMization"* of CIME
 - Introduction of requirements and APIs to make new components CIME compatible

Upcoming Shared Code Design new libraries that can be shared separately

- Separate general shared code library for fortran utilities
 - Provide functionality that fortran does not always provide in a standard way
 - works across a wide range of platforms and compilers
 - Stable APIs
 - Provide performance optimization where appropriate
 - Examples: random number generator, gamma function
- Separate library for scientific share code
 - Examples: saturation vapor pressure, zenith angle calculations
- Libraries would work like PIO, MCT, etc.

CESM Compsets And Grids: All prognostic "stand-alone" CAM "stand-alone" CLM "stand-alone" POP Core POP/CICE "stand-alone" CISM All Data

"De-CESMization" of CIME

CESM Example CAM CLM POP CICE CISM

Current

CIME Compsets And Grids: All Data CESM Compsets and Grids: All prognostic "stand-alone" CAM "stand-alone" CLM "stand-alone" POP Core POP/CICE "stand-alone" CISM

Upcoming

Goal is to encourage more community contributions and interactions in the development of CIME

> Questions??? Comments???

What do you have to do to become CIME compliant

• A CIME component currently

- must have init, run, finalize phases
- only have one run phase
- Must have a CIME configuration directory for builds and "component set" definitions
- Must listen to driver for flags for stopping and writing restarts