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What can we constrain with observations?

e gravity wave parameters
— horizontal wavelength
— range of phase speeds

e gravity wave distribution
— seasonal variation
— latitude, longitude where they occur
— dissipation/breaking level
— intermittency
e atmospheric response
— temperature in polar SH lower stratosphere
— O;in polar SH lower stratosphere
— temperature & winds throughout middle atmosphere
— planetary waves and sudden warmings



Changes to GW parameterization

* inertia-gravity waves
— propagation affected by Earth’s rotation
— triggered by same frontal threshold as mesoscale GW
— horizontal wavelength 300 km

— narrow spectrum in phase speed centered on wind in lower troposphere
(meant to capture speed of storm system)

e orographic gravity waves
— removed a factor of “landfrac” which does not seem correct in general
— enhanced momentum flux forcing (x 2) in Southern Hemisphere
e other
— mesoscale frontal wave unchanged
— convectively forced waves unchanged



Horizontal wavelength of observed waves (55°S)

MI (55 S) Winter (1 Jun — 30 Sep) 7-11 km (240)
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Momentum flux vs .
horizontal 15
wavelength for
upward propagating
waves in the upper
troposphere at
Macquarie Is, winter
(analysis from
radiosondes)

L
.
L]
[]
L]

10

M-flux magnitude (mPa)
:lL .!:.I.i; .I::| I
-

=
¥
. -'fr

L]
aes [ ]

F
*ep
]

L ]

LI

500 1000 1500
Horizontal Wavelength (km)

E—

observations rarely detect

waves with L, > 1000 km 300 km

observations of waves with
wavelength L, <300 km is
much more frequent



Phase speed relative to ground (55°S, winter)

Phase speed
distribution for
upward propagating
waves in the upper
troposphere at
Macquarie Is, winter

WACCM forcing
amplitude vs phase
speed (shifted by the
mean wind at
launch level or wind
near surface)

Normalized total counts
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Momentum flux vs phase speed
WACCM forcing

For inertia-GW, phase speed
spectrum is narrow and is
centered on speed of storm
system

For mesoscale GW, phases
speed spectrum is centered on
wind speed at the launch level

RESULT: inertia-GW momentum
flux is mostly negative but
mesoscale flux is evenly split
between positive and negative

Recent modeling work (not yet
published) supports the
prevalence of negative
momentum flux (leading to
westward forcing)
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Horizontal distribution of
wave activity

RMS brightness temperature amplitude from AIRS
(c) RMS AIRS Radiance: 10 hPa

0.146 0.222 0297 0373 0449 0524 0.60C0
K
from Hendricks et al., J. Atmos. Sci., 2014

WACCM GW flux (10 hPa, same months)
all waves




altitude, km

altitude, km

observational support for gw momentum forcing in
the SH winter stratosphere

scintillation from stellar occultation

->a measure of turbulence WACCM magnitude zonal GWD
-> signal not well correlated with topography (all waves)
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Height (km)

forcing by GW derived from radiosonde obs

momentum forcing derived from
radiosondes at 55°S
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pressure

WACCM
GWD at 55S

WACCM magnitude is a bit
low but variation is realistic.
Timing is delayed




momentum flux from balloon obs

Probability of cccurrence

Probability of occurrence
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de la Camarra et al., JGR, 2014

Waves with large upward flux occur
but are rare.

WACCM: fluxes are ~1-200 mPa and
intermittencies are ~1/5 to ~1/500

Herzog et al., JAS, 2012

Momentum fluxes higher over
mountainous terrain.

WACCM:
orographic fluxes >> non-orographic
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what is the principal source of GW SH/NH asymmetry

in the winter stratosphere?

estimated GWD magnitude for resolved waves
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There are many observations
that indicate enhanced GW
fluxes and/or GW drag in the SH
winter stratosphere compared to
the NH.

Some obs. show strongest
relation to topography; others to
storm tracks.

Current WACCM
parameterization does not find
the same hemispheric
asymmetry in either orographic
or frontal GW sources.

What sources are missing and/or
not well represented?

Possibilities:

— relative strength of baroclinic
storms not right (not captured in
the WACCM trigger)

— orographic forcing underestimated
because of orientation of ridges &
winds

— orographic GW with non-zero
phase speed neglected
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monthly T: WACCM vs SABER

July

Jul T SABER (2002-2013)

SH lower stratosphere
temperature looks OK

NH temperature looks OK

Jul T interoctive (15 yrs)

(WACCM-SABER)
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monthly T: WACCM vs SABER

November

Nov T SABER (2002-2013)

SH lower too cold

“summer” mesopause has not
developed

Nov T interactive (15 yrs)
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NH sudden warming climatology

SSW frequency NH vs MERRA 1980-2010 (unfilled)
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monthly column ozone: WACCM vs Halley Bay
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conclusions

Changes to WACCM GW parameterization

— added an additional spectrum of inertia-gravity waves (longer wavelength,
larger amplitude) launched by frontal trigger

— change (correction?) to orographic gravity waves that increases their
impact, especially in SH
e The horizontal wavelength of IGW (300 km) and range of phase
speeds (centered on the background wind near the surface) are
compatible with waves observed at Macquarie Island.

 The longitude x latitude distribution of parameterized waves agrees
reasonably with stratospheric observations.

e SH forcing is still too weak and too late but, so far, changes in
parameters that increase it are detrimental to the NH simulation.

e Some difference between the NH and SH gravity wave sources is
still missing and or misrepresented.
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