Whole Atmosphere Community Climate Model

Status, Development, Plans

AIM Section (& alumni)

High Altitude Observatory National Center for Atmospheric Research

NCAR

Objectives of Whole Atmosphere – Ionosphere Modeling

Advances in whole atmosphere modeling are critical to addressing outstanding fundamental questions in ionosphere-thermosphere research.

- How do solar and geomagnetic influences affect the whole atmosphere?
- What are the relative roles of lower atmosphere and solar/geomagnetic forcing on the ionosphere-thermosphere system?
- How do atmospheric waves affect the energy and momentum coupling between the lower atmosphere and the ionosphere-thermosphere?
- What are the connections between small and large scale features in the system, e.g., "plasma bubbles"?
- How does anthropogenic change affect the thermosphere and ionosphere?
- How does the ionosphere-thermosphere vary over multiple time scales, e.g., "space weather" and "space climate"?

There are several possible numerical modeling approaches to addressing these questions; model development that exploits other efforts and advances across NCAR is particularly attractive in a resource-constrained environment.

Recent Progress on WACCM-X

• Ion and electron energetics implemented:

Now calculating T_i and T_e in WACCM-X.

(Still set $T_i = T_e = T_n$ in WACCM, which is a good approximation up to ~150 km.)

• Equatorial electrodynamo installed:

Mostly parallel, with ESMF interpolation from geographic to geomagnetic coords.

• Ionospheric dynamics in progress:

Vertical diffusion ("ambipolar diffusion") of O⁺.

Horizontal transport of O⁺ in the upper ionosphere.

WACCM and WACCM-X Components and Status

Model Framework	Chemistry	Physics	Physics-X	Resolution
Extension of the NCAR Community Atmosphere Model (CAM) Finite Volume Dynamical Core	MOZART+ lon Chemistry (~60 species) Fully-interactive with dynamics.	Long wave/short wave/EUV RRTMG IR cooling (LTE/non- LTE) Modal Aerosol CARMA Parameterized GW Major/minor species diffusion (+UBC) Molecular viscosity and thermal conductivity (+UBC) Species dependent Cp, R, m.	Parameterized electric field at high, mid, low latitudes. IGRF geomagnetic field. Auroral processes, ion drag and Joule heating Ion/electron energy equations Ambipolar diffusion Ionospheric dynamo Ion/electron transport Coupling with plasmasphere/mag netosphere	Horizontal: 1.9° x 2.5° (lat x lon configurable as needed) Vertical: 66 levels (0-140km) 81/125 levels 0-~500km • < 1.0km in Upper Troposphere/ Lower Stratosphere • 1-2 km in strat. • 0.5 scale height in mesosphere/ thermosphere (0.25 scale height in mesosphere/ther mosphere with 125 levels)

Highlights — Momentum Coupling and Wave Propagation

WACCM-X temperature correlation map showing teleconnections between the polar winter stratosphere and the mid-latitude mesosphere-thermosphere

Hanli Liu, AGU Geophysical Monograph, 201, 181, 2014.

Highlights — Climate Change (preliminary results)

Integrating Ionospheric Dynamics into WACCM-X

Current concept is to put O⁺ transport inside the d- π Coupler

— Essentially adopting the existing TIME-GCM geographic scheme.

Integrating Ionospheric Dynamics into WACCM-X

This scheme has some limitations:

- Inherent issues doing O⁺ transport in geographic coordinates
- May be significant performance bottlenecks with O⁺ transport inside the d- π C
- Still requires imposed upper boundary condition for electron and heat flux
- Combining high-latitude potential with the dynamo is not entirely physical Therefore, it should be considered a short-term solution

WACCM-X lonosphere at ~250 km

WACCM-X Equinox Solar Minimum O+

Electrodynamo and Ion transport have been implemented Includes ambipolar diffusion, field-aligned transport, and ExB drifts

A well-defined equatorial ionospheric anomaly is produced by the model.

O⁺ Ions: Equinox, Solar Max Local Time vs. Latitude F-Region Ionosphere

WACCM-X

TIE-GCM

O⁺ Ions: Equinox, Solar Max UT vs. In(p₀/p) Latitude ~0, Longitude=0

WACCM-X

TIE-GCM

O⁺ Ions: Equinox, Solar Max Latitude vs. In(p₀/p) Local Time 12

WACCM-X

TIE-GCM

Do we really need a new ionosphere module?

• Current approach in TIE-GCM and WACCM:

- Dynamical calculations performed in the geographic coordinate system
 - Except for electrodynamo, which is calculated in geomagnetic coordinates
- Solar rates calculated in geographic coordinates
- Aurora calculated in geomagnetic coordinates but applied in geographic
- Ion chemistry integrated into neutral chemistry

• Problems with this approach:

- Upper boundary condition approximate electron and heat flux
- Upper boundary not high enough during big storms
- No light ions (H⁺, He⁺)
- Difficulty porting ion transport methodology to CAM dynamics

• Perhaps these can be addressed with incremental development:

- Calculate better upper boundary using other models and measurements
- Extend altitude range upward
- Add light ion transport
- Work with CAM dynamics to solve ion transport issues

• But we would still be left with some basic issues:

- No self-consistent interhemispheric ionosphere-plasmasphere scheme
- Hard to say how we would do light ions in CAM

Implementing a Ionosphere-Plasmasphere Model in WACCM-X

- Geomagnetic coordinate system
- Interhemispheric coupling
- Auroral-equatorial coupling of electrodynamics
- Field-aligned current approach to solving the global electric potential
- Capability for coupling to magnetospheric model

Ionospheric Dynamics in WACCM-X — Next Generation

Still some significant decisions:

- Where do ion/electron energetics go $(T_i \& T_e)$?
- We really need the aurora in both coordinate systems.
- What is the next-generation ionosphere-plasmasphere model?
 - and what physics does it need to contain?