Greenland subglacial drainage evolution regulated by weakly-connected regions of the bed

Matthew Hoffman Stephen Price

Lauren Andrews Ginny Catania

Jason Gulley

Weakly-connected

Distributed Drainage Channelized Drainage

JTIG

Claudia Ryser

NASA

Robert Hawley

Thomas Neumann

Field campaign and modeling supported by:

Field campaign, 2012

- moulin water pressure
- borehole water pressure
- ice velocity

Moulin water pressure indicates equilibrated subglacial **channels**.

However, ice speed continues to drop.

...continued evolution elsewhere in the drainage system?

Subglacial changes outside the channelized regions

- Low amplitude diurnal changes in boreholes
- Borehole head out of phase with velocity
 - Sampled 'disconnected' or 'isolated' distributed system
- Seasonal trends in some boreholes match seasonal trends in ice velocity.

Subglacial changes outside the channelized regions

- Low amplitude diurnal changes in boreholes
- Borehole head out of phase with velocity
 - Sampled 'disconnected' or 'isolated' distributed system
- Seasonal trends in some boreholes match seasonal trends in ice velocity.

Observational Summary

- Channels control short-term variations in velocity but *not* late-summer evolution.
- Late-summer evolution may be affected by changes in "isolated regions" of the bed.

Importance of Isolated Drainage?

Ice dynamics respond to the integrated basal traction over both **connected** and **disconnected** (isolated) regions (Iken & Truffer 1997).

If water pressure lowers in the disconnected region, that should increase the overall basal traction, causing less sliding.

Figure modified from Ian Hewitt

Ample evidence for **extensive** and **dynamic** isolated system from mountain glaciers, e.g.:

• Hodge (1979): 22/24 boreholes drilled in South Cascade Glacier intercept 'inactive' regions:

"Most of the bed, **possibly as much as 90%**, appears to be hydraulically inactive and isolated from a few active subglacial conduits"

- Murray & Clarke (1995), Gordon et al. (1998): Inactive regions can **change in pressure** or switch to active as water pressure in the active system rises.
- Iken & Truffer (1997): isolated cavities moderate active drainage regions

(Modified version of Hoffman & Price, 2014, JGR)

Cavities open by sliding, close by creep.

Cavities open by sliding, close by creep.

Channels open by melting, close by creep.

Idealized "ROGUE" Experiment

1500

E 1000-

500

-100

- 100km long domain
- "Plastic" glacier shape (constant Tau_d=10⁵ Pa)
- 5 km wide "catchment-scale" domain with laterally periodic boundaries & potential channel along centerline
- Study site:

25km inland, H=~750m, ds/dx = ~0.01

- 2. Summer forcing experiment:
 - Supraglacial meltwater input along centerline
 - Based on measured daily ablation rates
 - Diurnally-varying sinusoidal shape added
 - Lapse rate extends forcing from ELA to terminus
 - Diurnally-varying sliding based on GPS ice velocity observations

Observe seasonal evolution of each component of drainage system <u>at study location</u>.

Model results: water pressure

Model results: ice speed

Solve ice surface speed using CISM 2.1 with Coulomb basal friction law

Proposed conceptual model

Onset of the melt season

Large fraction of the bed is composed of weakly-connected cavities at a higher water pressure than the surrounding distributed system.

b

Middle of the melt season

Meltwater draining through moulins is largely accommodated by the formation of efficient channels.

Concurrently, some of the weakly-connected cavities have leaked water, lowering their water pressure.

End of the melt season

Channels collapse within days after melt inputs cease, but the partially drained weakly-connected cavities take months to recharge by basal melting, leaving higher integrated basal traction than before summer began.

Conclusions

- Observations and modeling suggest a 3-component conceptual model for drainage
 - Distributed
 - Channelized
 - "Isolated" or weakly connected
- Small changes in isolated drainage could play ar important role in seasonal evolution due to covering a large area fraction of the bed.
- Isolated system may take longer to recover in fall/winter → winter slowdown mechanism?

~2-5 years recharge time

Moulin pressure sensor installation: Summers 2011 & 2012

Hot Water Drilling & Borehole sensor installation: Summer 2011

œ

Measurements during two melt seasons – site FOXX

Andrews et al. 2014, Nature

(Modified version of Hoffman & Price, 2014, JGR)

Mass Conservation of Water

Evolution of Drainage Element Volume

Flow Law

Energy Balance

(Modified version of Hoffman & Price, 2014, JGR)

Mass Conservation of Water

Evolution of Drainage Element Volume

Flow Law

Energy Balance

(Modified version of Hoffman & Price, 2014, JGR)

(Modified version of Hoffman & Price, 2014, JGR)

Moulin water pressure indicates subglacial channels

- Large diurnal variability, specifically, low diurnal minima
- In phase with ice velocities
- Neighboring moulins highly correlated
- Channel model used to confirm quasi-steady state behavior during second half of summer

Moulin pressure controls short-term variations in ice speed (diurnal and melt-event-scale)

Surface measurements Continuous GPS at 11 sites Pressure in nearby moulins Weather stations Supraglacial stream Q, T

12,000r

Sermeq Avannarleq

Russell Glacier

Courtesy Russell Huff and

Borehole measurements

EnglacialSTemperatureIPressureSInclinationVVertical strainIOptical Televiewer

22N5

25N1

18N1 22XF

<u>Subglacial</u> *Water Pressure* Sliding (tethered stake) Water EC [Water, bed samples] er

20 Rm **Model Formulation**

Ice dynamics:

- Community Ice Sheet Model (CISM)
- Higher-order stress balance

Sliding law: Couples sheet hydrology (N) to dynamics $(\tau_{b_{j}} u_{b})$

• Coulomb friction sliding law (Schoof 2005, Proc. R. Soc. A)

independent of u_b (Coulomb friction).

 $\tau_b \propto N$

Model Formulation

Distributed Flow Model

sheet flow, e.g. linked cavities

(e.g. Hewitt 2011, J.Glac.)

Model Formulation Channelized Flow Model

1) Mass conservation of water

Hewitt 2011

2) Evolution of subglacial cavities

	melt from	
	flow	creep closure
∂S	$_M$	$SN_c^{ m of ice}$
∂t	$- \frac{1}{\rho_i}$	$\overline{\eta_i}$,

A turbulent flow law melt from flow $FQ^2 = S^{8/3} \left(\Psi + \frac{\partial N_c}{\partial x} \right), \qquad ML = Q \left(\Psi + \frac{\partial N_c}{\partial x} \right).$

Coupled to the surrounding sheet via the exchange term Ω