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Field campaign, 2012
 moulin water pressure
 borehole water pressure
* ice velocity
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Moulin water pressure indicates
equilibrated subglacial channels.

However, ice speed continues to drop.
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...continued evolution elsewhere
in the drainage system?



Subglacial changes outside the channelized regions
e Low amplitude diurnal changes in boreholes

e Borehole head out of phase with velocity
e Sampled 'disconnected’ or 'isolated’ distributed system

e Seasonal trends in some boreholes match seasonal trends in ice velocity.
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Subglacial changes outside the channelized regions
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Low amplitude diurnal changes in boreholes

Borehole head out of phase with velocity

e Sampled 'disconnected’ or 'isolated' distributed system

Seasonal trends in some boreholes match seasonal trends in ice velocity.
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Observational Summary

e Channels control short-term
variations in velocity but not
late-summer evolution.

e Late-summer evolution may
be affected by changes in
"isolated regions" of the bed.




Importance of Isolated Drainage?

Ice dynamics respond to the integrated basal traction
over both and disconnected (isolated) regions
(Iken & Truffer 1997).

If water pressure lowers in the disconnected region, that should
increase the overall basal traction, causing less sliding.

@ Disconnected drainage | i

Figure modified from lan Hewitt

Ample evidence for extensive and dynamic isolated system from mountain glaciers, e.g.:

 Hodge (1979): 22/24 boreholes drilled in South Cascade Glacier intercept

'inactive' regions:
"Most of the bed, possibly as much as 90%, appears to be hydraulically inactive and isolated from
a few active subglacial conduits"

e Murray & Clarke (1995), Gordon et al. (1998): Inactive regions can change
in pressure or switch to active as water pressure in the active system rises.
e lken & Truffer (1997): isolated cavities moderate active drainage regions



Subglacial Hydrology Model

(Modified version of Hoffman & Price, 2014, JGR)
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Weakly-connected Drainage Distributed Drainage Channelized Drainage
new component e.g. Hewitt 2011, J.Glac. e.g. Hewitt 2011, J.Glac.
(0-d subgrid representation) (Macroporous sheet)
Cavities open by sliding, Cavities open by sliding, Channels open by melting,

close by creep. close by creep. close by creep.



ldealized "ROGUE" Experiment

e 100km long domain

o "Plastic" glacier shape
(constant Tau,=10° Pa)

 5km wide "catchment-scale" domain
with laterally periodic boundaries &
potential channel along centerline

Study site:
25km inland, H=~750m, ds/dx = ~0.01

1. Springtime initial condition:
spinup 3-component hydrology to steady
2. Summer forcing experiment:

along centerline

* Based on measured daily ablation rates

* Diurnally-varying sinusoidal shape added
* Lapse rate extends forcing from ELA to terminus
* Diurnally-varying sliding based on GPS ice velocity

observations

Observe seasonal evolution of each component

of drainage system at study location.
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7. Sub-grid representation
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Hydraulic head (m),
relative to floatation elevation
|
|_l
-]
o

Model results: water pressure
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Ice surface speed (m yr -1 )

Model results: ice speed

Solve ice surface speed using CISM 2.1 with Coulomb basal friction law
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Proposed conceptual model

Onset of the melt season

Large fraction of the bed is composed of
weakly-connected cavities at a higher water pressure
than the surrounding distributed system.

Middle of the melt season
Meltwater draining through moulins is largely
accommodated by the formation of efficient channels.

Concurrently, some of the weakly-connected cavities
have leaked water, lowering their water pressure.

End of the melt season

Channels collapse within days after melt inputs
cease, but the partially drained weakly-connected
cavities take months to recharge by basal melting,
leaving higher integrated basal traction than before
summer began.

Hoffman et al. submittea



Conclusions

e Observations and modeling suggest a
3-component conceptual model for drainage
e Distributed
e Channelized
e "Isolated" or weakly connected

 Small changes in isolated drainage could play a
important role in seasonal evolution due
to covering a large area fraction of the bed.

e |solated system may take longer to recover in
fall/winter = winter slowdown mechanism?
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Moulin pressure sensor installation:
Summers 2011 & 2012
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Subglacial Hydrology Model

(Modified version of Hoffman & Price, 2014, JGR)

Image: Tim Creyts

Distributed Drainage
e.g. Hewitt 2011, J.Glac.

(Macroporous sheet)
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Subglacial Hydrology Model

(Modified version of Hoffman & Price, 2014, JGR)

Image: Tim Creyts Image: Tim Creyts

Distributed Drainage Channelized Drainage
e.g. Hewitt 2011, J.Glac. e.g. Hewitt 2011, J.Glac.
(Macroporous sheet)
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Subglacial Hydrology Model

(Modified version of Hoffman & Price, 2014, JGR)

Image: Tim Creyts

Isolated Drainage Distributed Drainage Channelized Drainage
new component e.g. Hewitt 2011, J.Glac. e.g. Hewitt 2011, J.Glac.
(0-d subgrid representation) (Macroporous sheet)
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Subglacial Hydrology Model

(Modified version of Hoffman & Price, 2014, JGR)

Image: lan Hewitt

Isolated Drainage
new component

(0-d subgrid representation)
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Channelized Drainage
e.g. Hewitt 2011, J.Glac.

Image: Tim Creyts

Distributed Drainage
e.g. Hewitt 2011, J.Glac.
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Moulin water pressure indicates subglacial channels
e Large diurnal variability, specifically, low diurnal minima

e |In phase with ice velocities

* Neighboring moulins highly correlated

e Channel model used to confirm quasi-steady state behavior during second
half of summer
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Moulin pressure controls short-term variations in ice speed
(diurnal and melt-event-scale)
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lce dynamics:

e Community Ice Sheet Model (CISM) i ‘a‘a
e Higher-order stress balance F

S|Idlng law: Couples sheet hydrology (N) to dynamlcs (Tp, Up)
e Coulomb friction sliding law (Schoof 2005, Proc. R. Soc. A)

e bounded basal drag, cavitation
Bedrock bump wavelength

1/n J
Uy )\maxA
=C N A=

Bedrock bump slope

sliding velocity, u, (m/yr)

At high N, basal traction is independent of N.

1/n (nonlinear viscous — the faster the sliding,
Tb x U b the more drag from bumps)

Floatation

At low N (near floatation), basal traction is
independent of u, (Coulomb friction).

X N (near floatation, bumps are drowned)

0.5
Effective pressure, N [I"u"IPa]l
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Basal Traction, =, (Pa)
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sheet flow, e.g. linked cavities

(e.g. Hewitt 2011, J.Glac.)

1) Mass conservation of water
~n
oh ('m, i
&tV a="=A{+w
ot Flux Pw\ Water input
divergence Baslal from surface
meilt

2) Evolution of subglacial cavities
Oh m
5= vo-vo=
elt
opening
A Darcy style flow law Heat from SOUICeS

kohg (heat from wede swneglected)

q:—"?w Vo mL = G H{up,: ™ )— gV

ice

Modified from Anderson, et al. 2004




Channehzed FIOW MOdel Hewitt 2011

i

1) Mass conservation of water
melt from

flow flow water input
dlvergence ow P
E}Q M _E%%n sheet
Bt + 0r  puw

2) Evolution of subglacial cavities

melt from
flow creep closure

aS M SN. of ice

at  p; n;
A turbulent flow law melt from flow
2 o8/3 ON. ON
F = 5 w - <
Q ( +3m)= ML—Q(IIf+ &E).

Coupled to the surrounding sheet via the exchange term Q
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