Modeling past and future variations of the Antarctic Ice Sheet

David Pollard¹ and Robert DeConto²

¹Pennsylvania State Univ. ²Univ. of Massachusetts

NCAR CESM/LIWG meeting, June 22, 2016

Outline

(1) Calibration vs. last 20,000 years with Large Ensembles

(2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise

(3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios

Introduction: Steps in Large-Ensemble modeling

Equivalent sea-level envelopes

Probability density maps

Showing all 625 runs (grey: score S = zero)

Pollard et al., GMD, 2016.

Other recent Antarctic ~LE modeling: Whitehouse et al., 2012a,b. Briggs and Tarasov, 2013-14. Golledge et al., 2014. Maris et al., 2014.

Probability of grounded ice (0 to 1)

= $\Sigma(S_i$ with grounded ice at x,y,t) / $\Sigma(S_i$, i =1 to 625)

Black lines: grounding line reconstructions, RAISED Consortium, QSR, 2014

4 model parameters calibrated

Outline

(1) Calibration vs. last 20,000 years with Large Ensembles

(2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise

(3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios

Adding hydrofracture & cliff failure, to produce large Pliocene sea-level rise

Rovere et al., EPSL, 2014: mid-Pliocene shore-line elevations > ~20 m. But note uncertainty due to GIA and tectonic uplift (Austermann et al., Geol., 2015)

Adding hydrofracture & cliff failure, to produce large Pliocene sea-level rise

Two mechanisms to produce drastic EAIS basin retreat in warm Pliocene climates: (1) Surface melt and hydrofracture, (2) Large tidewater cliff failure

Size of Rhode Island

Larsen B breakup, 2002

(Scambos et al. 2003)

Terminus of Helheim Glacier, E. Greenland. Cliff height above waterline is nearly ~ 100m. Photo: Knut Christianson, U. Washington.

Pollard et al., EPSL, 2015

Outline

(1) Calibration vs. last 20,000 years with Large Ensembles

(2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise

(3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios

RCP8.5, WITH hydrofrac. and cliff failure (CALVLIQ=100, CLIFFVMAX=3):

Also:

Cornford et al., 2015 Winkelmann et al., 2015 Golledge et al., 2015 Feldmann and Levermann, 2015 Ritz et al., 2015

Future sea-level rise envelopes for RCP 2.6, 4.5 and 8.5

- Actual Pliocene sea-level rise is uncertain, due to possible dynamic topography and GIA effects (Raymo and Mitrovica, 2012; Rovere et al., 2014; Austermann et al., 2015)
- But need to calibrate non-analog processes (here, hydrofracturing, ice-cliff failure) with deep-time data
- PLIOMAX project (<u>www.pliomax.org</u>)

Future: A different large ensemble, with LIG and Pliocene sieves

Binary scoring with pass/fail targets:

(1) Pliocene ~3 Ma sea level: +10 to 20 m

(2) Last Interglacial ~125 ka sea level: +3.5 to 7.5 m

DeConto and Pollard, 2016

Future: If peak RCP8.5 ($CO_2 \sim 2000$ ppm) is maintained for 5000 years...

cf. Winkelmann et al., Science Adv., 2015

Ice thickness, 1950 to 2500, RCP8.5 (avi)

Surface melt, 1950 to 2500, RCP8.5 (avi)

Ice speed, 1950 to 2500, RCP8.5 (mov)

Summary

- Future atmospheric melting, hydrofracturing will be important at Antarctic margins
- Drastic future sea-level rise with RCP 8.5 (> ~10 m by 2500 CE)
- Future results depend on actual mid-Pliocene sea-level rise (~5 m, or 15 m?)
- Need to calibrate non-analog processes with deep-time data PLIOMAX project

Outline

(1) Calibration vs. last 20,000 years with Large Ensembles

(2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise

(3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios

(4) Simple bedrock replaced by global Earth-GIA-sea level model

Coupled ice sheet – Earth models

in collaboration with N. Gomez (McGill) and J. Mitrovica (Harvard)

deBoer et al., 2014 Konrad et al., 2015

Sea level variations simulated with global Earth model

Sea level change relative to global average rise, for:

Clark et al., Science, 2002

Fig 1. Normalized (dimensionless) sea-level change associated with melting from (A) the southern one-third of the Laurentide Ice Sheet and (B) West Antarctica, as they existed at the onset of the mwp-IA event. The predictions, which are described in detail in the text, assume that melting is proportional to ice height in this region relative to present-day values, as given by the ICE-3G deglaciation model (21). The predictions are normalized by the eustatic sea-level change; the color scale refers to fractions of this change. The small triangles denote the locations of six far-field sites considered in Table 1: (from left to right) Tahiti, Argentine Shelf, Barbados, Sunda Shelf, Bonaparte Gulf, and Huon Peninsula.

A) S. Laurentide melting:

B) W. Antarctic melting:

Ocean-ice self gravity: negative feedback

Ocean-ice gravitational effect: reduces Marine Ice Sheet Instability

Gomez et al., 2012, 2013, 2015

Nearby ocean depth is affected by gravitational attraction of ice mass.

Negative feedback during MISI retreat:

- smaller interior ice mass
- \rightarrow lower ocean
- \rightarrow less water depth at grounding line
- \rightarrow less ice thickness at grounding line (assumed to stay at flotation)
- \rightarrow less ice flux across grounding line (Schoof, 2007)
- \rightarrow less interior ice drawdown

Viscoelastic profiles # 1 to 5

- Specify a range of viscosity profiles through lithosphere & mantle
- No lateral heterogeneity (for now)
- Elastic properties vs. depth as in PREM (Dziewonski and Anderson, 1981)

Future 3000 years, with viscosity profiles 1-5 and ELRA

- Earth models produce less sea-level rise than simple ELRA model
 due to full Earth physics, and self-gravitation negative feedback.
- LVZ profile produces more reduction in SLR
 - due to faster and more localized rebound, less grounding-line retreat.

Similar results in: Gomez et al. (Nat. Comm., 2015) Konrad et al. (EPSL, 2015)

Future snapshots at +3000 yr (~5000 CE), HV vs. LVZ

Summary

- Drastic future sea-level rise with RCP 8.5 (~10 m by 2500 CE). But...
- Future results depend on actual mid-Pliocene sea-level rise (~5 m, or 15 m?)
- Need to calibrate non-analog processes with deep-time data PLIOMAX project
- Replacing ELRA with Earth-sea level model reduces future SLR (full Earth, self-gravitation).
- larger SLR reduction with Low-Viscosity-Zone profile (faster, localized rebound).

0.4 0.5 0.6 0.7 0.8 0.9 1.0 .01 0.2 0.3 0.1

Future, RCPs: o 🖕

Summary: o

Sea-level-rise envelopes for the various RCPs

RCP8.5, VCLIF=0, CREVLIQ=0

Large ensemble, type 2: Pliocene and Last Interglacial sea level targets (pass/fail)

(DeConto and Pollard, Nature, 2016).

Large Ensembles, future 3000 years, ELRA vs. HV vs. LVZ

Large Ensembles for each RCP, varying hydrofracturing and cliff parameters.

Scoring vs. last deglacial observations (*not* vs. Pliocene SLR).

- Again, Earth profile HV produces less SLR than ELRA (full Earth, self-gravitation)
- Earth profile LVZ produces less SLR than HV (faster, more localized rebound)

		Small LGM_ice: o o Summary		Summary: 😑
• Simpl	e LE score-weighting is vial	ole, but only for Full Factorial sa	mpling.	
• Basa	sliding coefficients on cont	nental shelves ARE large (slippe	ery).	
• LGM	ice volumes WERE small	ESL contribution was only ~5 to	8 m.	
• With	RCP8.5, potential for drastic	c future sea-level rise:		
- Ne	ed to calibrate non-analog p	processes (hydrofracturing, ice-c	liff failure) with deep-time data	a.

- Future SLR envelopes depend on actual mid-Pliocene sea-level rise.

Limitations:

- Not definitive! Just maps out a procedure to calibrate vs. past, produce future envelopes.
- Only parametric uncertainty is addressed. Should address structural uncertainty, other data-scoring strategies.

Ice thickness, 1950 to 2500, RCP8.5 (mov, rainbow)

Ice thickness, 1950 to 2500, RCP8.5 (mov)

Surface melt, 1950 to 2500, RCP8.5 (mov)

Meltwater Pulse 1A

- Rapid global mean sea-level rise, ~14-18 m, ~14.6 to ~14.3 ka (Carlson and Clark, 2012; Deschamps et al., 2012)
- Sea-level fingerprinting suggests significant contribution from Antarctica (> ~5 m, Clark et al., 2002; Bassett et al., 2005)

Carlson and Clark, Rev Geophys., 2012

Fig 1. Normalized (dimensionless) sea-level change associated with melting from (A) the southern one-third of the Laurentide Ice Sheet and (B) West Antarctica, as they existed at the onset of the mwp-IA event. The predictions, which are described in detail in the text, assume that melting is proportional to ice height in this region relative to present-day values, as given by the ICE-3G deglaciation model (21). The predictions are normalized by the eustatic sea-level change; the color scale refers to fractions of this change. The small triangles denote the locations of six far-field sites considered in Table 1: (from left to right) Tahiti, Argentine Shelf, Barbados, Sunda Shelf, Bonaparte Gulf, and Huon Peninsula.

