An Ice Sheet model validation framework for the Greenland ice sheet

S. Price¹, M. Hoffman¹, J. Bonin⁶, I. Howat⁴, T. Neumann², J. Saba², I. Tezaur⁵, J. Guerber², D. Chambers⁶, K. Evans³, J. Kennedy³, J. Lanaerts⁷, W. Lipscomb¹, M. Perego⁶, A. Salinger⁵, R. Tuminaro, M. van den Broeke⁷, S. Nowicki²

> ¹Los Alamos National Laboratory ²NASA Goddard Space Flight Center ³Oak Ridge National Laboratory ⁴Ohio State University ⁵Sandia National Laboratories ⁶University of South Florida ⁷Utrecht University

Supported by DOE Office of Science ASCR & BER through SciDAC

Motivation / Concept

Components

Results

Summary & Future Work

this again?

(yawn)

GMDD paper in review

Georgelantifie Model Development	Geoscientific Model Development An interactive open-access journal of the European Geosciences Union				
Ber- Constitu-	EGU.eu EGU Journals Contact Imprint				
Submit a Manuscript manuscript tracking	doi:10.5194/gmd-2016-97 © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.		Discus	sion papers	Copernicus Publications The Innovative Open Access Publisher
About		Abstract	Discussion	Metrics	Search articles
Editorial board	Methods for assessment of models		23	3 May 2016	Search
Articles Special issues	An ice sheet model validation framework for the	Review statu	us		Author 🔽 Q
Highlight articles	Greenland ice sheet	for the journal	Geoscientific	er review Model	Download
Subscribe to alerts	Stephen F. Price ¹ , Matthew J. Hoffman ¹ , Jennifer A. Bonin ² , Ian M. Howat ³ , Thomas Neumann ⁴ , Jack Saba ^{4,6} , Irina Tezaur ⁵ , Jeffrey Guerber ^{4,7} , Don P.	Development (GMD).		
Peer review	Chambers ² , Katherine J. Evans ⁸ , Joseph H. Kennedy ⁸ , Jan Lenaerts ⁹ , William H. Linscomb ¹ Mauro Pereno ¹⁰ Andrew G. Salinger ¹⁰ Raymond S. Tu	minaro ¹⁰ Mich	iel R van de	n	PDF
For editors and referees	Broeke ⁹ , and Sophie M. J. Nowicki ⁴ ¹ Los Alamos National Laboratory, MS B216, Los Alamos, NM 87545, USA ² University of South Florida, St. Petersburg, FL 33701, USA ³ The Ohio State University, Columbus, OH 43210, USA				Short summary We introduce the Cryospheric Model
User ID	⁴ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA				Comparison Tool (CMCT) and propose qualitative and
Password	⁶ Science, Systems, and Applications, Inc., Lanham, Md 20706, USA				quantitative metrics for
▶ New user? ▶ Lost login?	′Sigma Space Corp., Lanham, MD 20706, USA ⁸ Oak Ridge National Laboratory, MS 6301, Oak Ridge, TN 37831, USA				Redu more
	⁹ Utrecht University, Utrecht, Netherlands ¹⁰ Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185, USA				
Follow @EGU_GMD					 EndNote
	Received: 22 Apr 2016 – Accepted: 18 May 2016 – Publishe	d: 23 May 2016			

(two positive reviews so far)

Validation software is online and ready for testing by the community

NASA	National Aeronautics and Space Administration Flight Projects Sciences and Exploration Goddard Space Flight Center
Cryos	phere Model Comparison Tool (CmCt)
Home	CmCt: Cryosphere Model Comparison Tool
Request an account Submit model data Log out	The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is based on a long history of ice sheet model intercomparison projects. ISMIP6 brings together for the first time a consortium of international ice sheet models and couple ice sheet-climate models to fully explore the sea level rise contribution from the Greenland and Antarctic ice sheets under a changing climate. A related goal is to quantify the uncertainty in sea level rise, arising from both uncertainty in climate forcing and ice sheet models.
	E Sheet Model Intercomparison Project for CMIPS
	The Cryospheric Model Comparison Tool (CmCt) is designed to facilitate rapid comparison between ice sheet model results, and between ice sheet models and available observations. The observational data sets available through the CmCt are processed and edited following community best practices (such as those used by the IMBIE2 effort), and eliminate the need for detailed understanding of remote sensing data by producing data sets that can be directly compared with model output variables. The overall goal of the CmCt is to eliminate barriers preventing the use of remote sensing data by the ice sheet modeling community.
	GLAS-CISM Bilinear differences for CISM file cism_usrf_yr_2003.000000.txt

https://ggsghpcc.sgt-inc.com/cmct/

Motivation / Concept

Components

Results

Summary & Future Work

Motivation

There are currently (up to) 2 decades of large-scale satellite observations of Greenland ice sheet geometry change:

ICESat1:	2003 – 2009
GRACE:	2002 – 201? (ongoing)

Future missions will extend these observational time series:

ICESat2:2017 - 20??GRACE "follow-on":2017 - 20??GRACE22020's - ?

These data can and should be used for ice sheet model *validation***, but no framework currently exists for doing so.

** validation: How well do our models represent the real ice sheet?

Concept

Run ice sheet model over some specified time period for which ICESat and / or GRACE observations exist

Process model output for comparison to these observations

Process observations for comparison to model output

Evaluate model performance relative to observations:

ICESat : ice sheet surface elevation [state comparison]

GRACE : rate of mass change [trend comparison]

Calculate *metrics* to quantify model performance (e.g., to gauge improvement as new dynamics, physics, boundary conditions, higher-resolution are added)

Concept

The Main goal in *this* work is to demonstrate whether or not we can use these observations to help validate models (as opposed to actually arguing that we have validated a particular model)

Questions:

(1) Can we develop standard *metrics* for comparing models with these observations?

(2) Can we demonstrate that these metrics are useful for distinguishing between relatively worse and relatively better model simulations?

Motivation / Concept

Components

State and Date

Results

Summary & Future Work

Components: Observations

Validation

ICESat: 2003 – 2009 GRACE: 2003 – 2011 (CSR Release-05)

Model Forcing

RACMO2¹ (1960-present):

- monthly SMB (applied as anomalies)

Outlet Glacier Flux² (1990-present):

- mean-annual flux at grounding line

¹ van Angelen et al. (*Surv. Geophys.*, 2013) ² Enderlin et al. (*GRL*, 2014)

Components: Model Forcing

RACMO¹ SMB over time period of interest is well validated over Greenland

Dynamic thinning over same time (1990-present) is well captured by the flux time series from ~15 outlet glaciers²

We take these datasets as the "truth" (or at least our best guess) and use them as model forcing

¹ van Angelen et al. (*Surv. Geophys.*, 2014) ² Enderlin et al. (*GRL*, 2014)

Outlet Glacier Flux Forcing Time Series

Components: Models

Persistence Model:

- hold geometry constant in time
- useful for testing against altimetry observations only

SMB-only Model:

- Apply RACMO2 SMB time series to dH/dt

- include SS "discharge" using 1960-1990 mean SMB

Dynamic Model:

- $CISM2.0^{1} + FELIX-FO^{2}$
- parallel, 3d, first-order Stokes approximation
- coupled to CISM 2.0 as external dycore (hex. mesh)
- forced at boundaries using outlet glacier flux time series

¹ http://github.com/CISM/cism/ ² Tezaur et al. (*GMDD*, 2014)

1 km res. initial condition: surface speed

1 km res. initial condition: ice flux

Data Processing

ICESAT / GRACE data processing

• stuff happens ...

Model post-processing for ICESAT

• only minor steps needed

Model Post-processing for GRACE

- Model lat., Ion. ice thickness binned at $\frac{1}{2} \times \frac{1}{2}$ degree
- Thickness in each bin converted to cm water equiv.
- Binned data transformed to 60x60 spherical harmonics
- Result is model "seen" at equiv. resolution to GRACE
- Harmonics mapped back to $\frac{1}{2} \times \frac{1}{2}$ degree bins for plotting

Motivation / Concept

Components

Results

Summary & Future Work

Results

Results: ICESat

Distance from GLAS footprint to CISM node (km)

GLAS-CISM Bilinear comparison for CISM file cism_usrf_yr_2007.800000.txt

1000

bilinear_compare.pro Mon Dec 14 14:32:25 2015

bilinear_compare.pro Mon Dec 14 14:32:25 2015

Results: ICESat Metrics

Date (yr)	$\overline{\Delta z}$ (m)	$\sigma_{\Delta z}$ (m)	$\overline{ \Delta z }$ (m)	$\sigma_{ \Delta z }$ (m)
	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.
2003.8	0.26, 0.20, 0.15	10.48, 10.43, 10.38	4.46, 4.40, 4.37	9.49, 9.45, 9.42
2004.8	0.11, 0.01, -0.05	10.87, 10.83, 10.78	4.61, 4.56, 4.52	9.84, 9.82, 9.79
2007.8	0.33, 0.19, 0.04	10.33, 10.28, 10.24	4.35, 4.29, 4.26	9.38, 9.34, 9.32

Whole-ice-sheet metrics for SMB-only simulation (top) and SMB+FF simulation (bottom)

Date (yr)	$\overline{\Delta z}$ (m)	$\sigma_{\Delta z}$ (m)	$\overline{ \Delta z }$ (m)	$\sigma_{ \Delta z }$ (m)
	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.
2003.8	0.27, 0.20, 0.15	10.49, 10.43, 10.38	4.46, 4.40, 4.37	9.50, 9.45, 9.42
2004.8	0.12, 0.01, -0.05	10.89, 10.83, 10.78	4.62, 4.56, 4.52	9.86, 9.82, 9.79
2007.8	0.36, 0.19, 0.19	10.34, 10.28, 10.24	4.36, 4.29, 4.26	9.38, 9.34, 9.32

Results: ICESat Metrics

Date (yr)	$\overline{\Delta z}$ (m)	$\sigma_{\Delta z}$ (m)	$\overline{ \Delta z }$ (m)	$\sigma_{ \Delta z }$ (m)
	CISM, RACMO2, Pers	. CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.
2003.8	0.26, 0.20, 0.15	10.48, 10.43, 10.38	4.46, 4.40, 4.37	9.49, 9.45, 9.42
2004.8	0.11, 0.01, -0.05	10.87, 10.83, 10.78	4.61, 4.56, 4.52	9.84, 9.82, 9.79
2007.8	0.33, 0.19, 0.04	10.33, 10.28, 10.24	4.35, 4.29, 4.26	9.38, 9.34, 9.32

Whole-ice-sheet metrics for SMB-only simulation (top) and SMB+FF simulation (bottom)

Date (yr)	$\overline{\Delta z}$ (m)	$\sigma_{\Delta z}$ (m)	$\overline{ \Delta z }$ (m)	$\sigma_{ \Delta z }$ (m)
	CISM, RACMO2, Pers	. CISM, RACMO2, Pers.	CISM, RACMO2, Pers.	CISM, RACMO2, Pers.
2003.8	0.27, 0.20, 0.15	10.49, 10.43, 10.38	4.46, 4.40, 4.37	9.50, 9.45, 9.42
2004.8	0.12, 0.01, -0.05	10.89, 10.83, 10.78	4.62, 4.56, 4.52	9.86, 9.82, 9.79
2007.8	0.36, 0.19, 0.19	10.34, 10.28, 10.24	4.36, 4.29, 4.26	9.38, 9.34, 9.32

Results: ICESat Metrics

Results: ICESat

The model was initialized using the recent Bamber DEM¹, which uses ICESat data from the time span of our model run

Overall, the model / observation mismatch is small at the whole-ice-sheet and basin scale (mean differences <1 m)

While unable to distinguish between simulations conducted here, ICESat observations confirm that:

- the model states are a good match to observations
- the models are clearly "doing no harm" w.r.t. respecting the observations / init. cond.

Results: GRACE

Total mass change from 2003-2012

Whole ice-sheet mass trend

GRACE Metrics

Proposed metrics, M*, for use in evaluating model performance relative to GRACE observations:

$$PVE(x,y) = \frac{\sigma_{GRACE} - \sigma_{[GRACE - Model]}}{\sigma_{GRACE}} \times 100$$

$$M_{PVF} = \text{ ice sheet wide average of PVE}$$

M_{Trend} = difference in spatial mean, linear trend

Simulation	Trend (Gt yr^{-1})	M_{Trend} (error)	M_{PVE} (%)
GRACE	-186.1	0 (0%)	100
RACMO2-SMB-only	-83.3	-102.8 (55%)	39.8
SMB-only	-100.4	-75.7 (41%)	46.5
SMB+FF	-121.0	-65.1 (35%)	49.7

Motivation / Concept

Components

Results

Summary & Future Work

Summary

Questions:

(1) Can we develop standard *metrics* for comparing models with these observations?

YES (other metrics possible too)

(2) Can we demonstrate that these metrics are useful for distinguishing between relatively worse and relatively better model simulations?

YES (with caveats ...)

Summary

- Over this time span, and for this set of simulations, ICESat observations ARE NOT clearly able to distinguish between the different simulations
- GRACE observations ARE clearly able to distinguish between different simulations
- GRACE metrics confirm expectations:
 - model with SMB and dynamics forcing better than ...
 - model with SMB forcing only, better than ...
 - non-dynamic models
- Here, *trend* observations (GRACE) useful for distinguishing between simulations, *state* observations (ICESat) are not

Summary

- Here, *trend* observations (GRACE) useful for distinguishing between simulations, *state* observations (ICESat) are not
- But state information still important a good match to the observed trends would be much less compelling if match to state was poor
- Thus, validation against observations should account for both the state and trend (of the model and observations); different types of observations needed for validation
- Current generation ice sheet models, when appropriately forced, show skill at mimicking ice sheet observations

Future Work

- Refine CMCT as beta version undergoes testing
- Include GRACE processing (currently offline from CMCT)
- Extend to Antarctic observations and model test cases
- Include other data from past, present, future:
 - 1990's NASA-P3, ERS, Envisat altimetry (past)
 - OIB, Cryosat altimetry (present)
 - ICESat2, GRACE2, Cryosat (future)
- Include other types of validation data (temperature, etc.)

Results: GRACE PVE

ICESat Post Processing

- GIMP 90-m DEM mask used to filter GLAS rel. 64 data.
 GLAS points excluded ...
 - if not within GIMP mask
 - if reflectivity < threshold value
 - if waveform stndev > threshold value
 - if | GIMP GLAS | > 200 m (clouds, blowing snow)
- Annual model output compared to elevations from fall ICESat campaign of same year
- Model grid point elevations are interpolated to nearest GLAS footprint

GRACE Post Processing

- Ocean, atmos. trends filtered out
- C₂₀ geocenter terms replaced with higher-accuracy SLR versions
- GIA model used to remove isostacy signal
- Monthly data averaged to annual
- No other smoothing applied to GRACE data