Announced title: Elevation classes for SMB calculations

Miren Vizcaino, TU Delft

NEW TITLE

Coupled climate and Greenland ice sheet evolution up to A.D. 2300 simulated with the MPI model

Miren Vizcaino (1), Uwe Mikolajewicz (2), Florian Ziemen (2), Christian Rodehacke (2,3), Ralf Greve (4), and Michiel R. van den Broeke (5) (1) Department of Geoscience and Remote Sensing, Delft University of Technology, The Netherlands (2) Max Planck Institute for Meteorology, Hamburg, Germany (3) Department of Arctic and Climate Research, Danish Meteorological Institute, Denmark (4) Institute of Low Temperature Science, Hokkaido University, Japan

Photograph by James Balog

Motivation

- ISMIP6
- Ice sheet sensitivity to climate variability
- Propagation of SMB biases in a coupled model
- Processes that can be investigated with a coupled model

Model

ISMIP6 coupled experiments

Table 1: Summary of the ISMIP6 experiments.

Experiment Title	CMIP6 Label (experiment id)	Experiment Description	Start Year	End Year	Minimum # Years Per Simulation	Major Purposes						
DECK Experiments												
AMIP	amip ism-amip-std	observed SSTs and SICs prescribed 1979 2014 36 evaluation, va		evaluation, variability								
pre-industrial or present day control	piControl piControl-withism ism-piControl-self ism-pdControl-std	pre-industrial (pi) conditions imposed with CO ₂ concentration fixed, or present day (pd) condition imposed	n/a	n/a	<mark>(500</mark>)	evaluation, unforced variability						
abrupt quadrupling of CO2	abrupt-4xCO2	atmospheric CO ₂ concentration abruptly quadrupled and then held constant	n/a	n/a	150	climate sensitivity, feedbacks, fast responses						
1% per year CO ₂ increase	1pctCO2 1pctCO2-withism ism-1pctCO2-self ism-1pctCO2-std	atmospheric CO_2 concentration prescribed to increase at 1% yr ¹ and then held constant to quadruple levels	n/a	n/a	<mark>(150</mark>)	climate sensitivity, feedbacks, idealized benchmark						
CMIP6 historical Simulations												
CMIP6 historical	historical historical-withism ism-historical-self ism-historical-std	simulation of the recent past with CO2 concentration prescribed	1850	2014	165	evaluation						
		CMIP6 ScenarioMIP S	imulatio	15								
ScenarioMIP	ssp5-8.5 ssp5-8.5-withism ism-ssp5-8.5-self ism-ssp5-8.5-std	future scenario with high radiative forcing by the end of the century	2015	2300	286	climate sensitivity						
CMIP6 PMIP Simulations												
PMIP last interglacial	lig127k ism-lig127k -std	simulation of the last interglacial	n/a	n/a	3000	climate sensitivity, feedbacks, long responses						

5

Nowicki et al., GMDD

Holocene results

- From 9 to 3.5 ky BP, volume decreases in response to high insolation
- Without human GHGs, the modeled present-day GrIS gains mass

Present-day topography

Simulated 1960-2005 thickness and bias w.r.t. observations (Bamber et al. 2001)

- Total **area** and **volume** are **overestimated**
- NW margin too far from coast

Contours:

- Simulated and observed topography
- Modeled and observed (white) margins

SMB compares relatively well with high-resolution regional climate model

4000

- kg m⁻² yr⁻¹ Differences with RCM are due to atmospheric and topographic biases (* isolates atmospheric bias)
 - NW thickness biases are caused by insufficient accumulation

Three scenarios

Vizcaino et al., GRL, 2015

- 3 scenarios: RCP3.0, RCP4.5, RCP8.5 and their extensions (ECP's)
- In **RCP2.6**, T peaks in 21st century, then declines
- 1, 3 and 9 K warming by
 2300

Volume and SMB evolution

Gt a ⁻¹		RCP/ECP 2.6		RCP/ECP4.5		RCP/ECP8.5_4x	
	1980- 1999	2080- 2099	2280 - 2299	2080- 2099	2280- 2299	2080- 2099	2280- 2290
SMB	288	88	149	-5	-145	-313	-2132
Accu	707	+7%		+9%		+18%	
RU	419	+60%		+84%		+273%	

- 37, 44 and 68
 (2100) and 68, 135
 and 539 (2300) mm
 global-mean SLR
- 10-30% less mass loss if SMB
 - elevation feedback
 - is not included (*)
- SMB becomes negative by 2100 in RCP4.5 and RCP8.5

Variability in the simulated 1990-2013 GrIS mass trend

- Net **mass loss** in the three ensemble members
- Large spread: 0.06, 0.08 &
 0.15 mm a⁻¹ SLR
 - Mass loss is **underestimated** (Shepherd et al. 2012: 0.39±0.13 mm a⁻¹ SLR) due to lack of ocean forcing

Small sensitivity of future volume loss to internal climate variability

- Approx. linear increase of sigma with the mean
- Much less variation within ensemble than for different scenarios

Future SMB

1960-2005

- ELA increases in all simulations, particularly in the northern half
- SMB increases over N & SE accumulation areas due to increased snowfall

No "pinning-point"

Eemian GrIS as simulated with RACMO-ANICE (Helsen et al., 2013)

Sources of elevation change

2080-99 minus 1980-99, under RCP8.5:

- Gross pattern largely given by cumulative SMB
- Increased surface slope from cumulative SMB enhances ice flow
 - This partially counterbalances elevation reduction from enhanced melt

Elevation-SMB feedback

SMB anomaly associated with elevation change 2080-99 minus 1980-99 under **RCP8.5**

Vizcaino et al., GRL, 2015

- Elevation change affects
 melt, precipitation, and rain
 fraction
- Feedback estimated from simulations where SMB is calculated at fixed 1980-1999 ISM topography
- Feedback reduces SMB over most of the ice sheet
 - Melt increases at reduced elevations
 - Accumulation is reduced at increased elevations
- Large spatial gradients, as in *Helsen et al., [2012]*

Ice discharge evolution

Simulated ice discharge in Gt a⁻¹ per 10⁴ km² and GrIS margin (green contour) :

- Decreases in all simulations due to marginal retreat and thinning caused by increased runoff (as in Lipscomb et al., J. Clim., 2013)
- However, ice discharge distribution is not realistically simulated (e.g., NW) & model does not reproduce current glacier acceleration

Conclusions

- **First** coupled simulation from GrIS model and AOGCM under RCP/ECP forcing
- Results suggest that GrIS would be growing in absence of anthropogenic climate change
- Surface mass balance, elevation and ice flow are **coupled**
- SMB-elevation feedback enhances mass loss by 10% (2100) and 30% (2300)
 - Limited validity of fixed-topo SMB projections beyond 2100
- Ensemble reveals
 - wide spread in simulated present-day mass trends
 - ➤Caution in evaluation of models with observations
 - small sensitivity to future climate variability compared with sensitivity to GHG scenario