

2016 CESM WORKSHOP

COLA / AOES Land Group

Impacts of land use / land cover change on afternoon precipitation

Liang Chen, Paul Dirmeyer

George Mason University

Breckenridge, CO

06/22/2016

Motivation

- Complexity in precipitation response to land use/land cover changes
- Soil moisture-precipitation coupling

Motivation

Rain follows the plow?

source: http://www.okgenweb.org

Research Question

• How does land use /land cover change influence afternoon rainfall during summer?

CESM land-cover-change experiment

Name	ATM	LND	Land Cover
2000			PFTs in 2000
1850	CAM4		PFTs in 1850
0850		CLM4.5	PFTs in 0850
2000_off	CRUNCEP		PFTs in 2000
1850_off			PFTs in 1850
0850_off			PFTs in 0850

- a horizontal resolution of 0.9 ° x 1.25°
- hourly output for variables needed
- 45-year simulation

Land Cover Change

Land-Atmosphere Coupling Strength

Land segment:

$$CS_l = \sigma_{SM} \frac{\partial LH}{\partial SM}$$

Atmosphere segment:

$$CS_a = \sigma_{LH} \frac{\partial CAPE}{\partial LH}$$

- SM is morning soil moisture at 10 cm (0900-1200)
- LH is morning latent heat flux (0900-1200)
- CAPE is afternoon convectively available potential energy (1300-1800)

Sensitivity of afternoon rainfall

 $S_{rain} = \sigma_{SM} \frac{\partial \Gamma(rain)}{\partial SM}$

$$S_{rain} = \sigma_{SM} \frac{\partial I_{rain}}{\partial SM}$$

- SM is morning soil moisture at 10 cm (0900-1200)
- $\Gamma(rain)$ is the probability of afternoon rainfall for each SM bin
- I_{rain} is the intensity of afternoon rainfall

Morning Fluxes

Morning ET

Afternoon Rainfall

Afternoon Rainfall

IASON

Coupling Strength (land)

Coupling Strength (atmosphere)

MASON UNIVERSITY

Sensitivity of Afternoon Precipitation

Conclusion

 Deforestation in the eastern US and agricultural activities over the Great Plains

LH increases, SH decreases

land-atmosphere coupling "hotspot" over the Great Plains

frequency of afternoon precipitation is sensitive to the morning ET or soil moisture

• Significantly increased afternoon precipitation over the Great Plains; local impacts undermined by the control of large-scale atmosphere conditions over the eastern US

Forward Looking

- Coupling issues between CLM and CAM
- Influence of convective triggers

Coupling Strength

... between soil moisture and latent heat flux

Does the atmosphere model give the right behavior in the coupled simulation?

Convective Trigger

- Convective trigger in CAM
- Timing of precipitation

 $\theta_{def} = 0 \Longrightarrow$ local convection initiation

(Tawfik and Dirmeyer 2014)

Timing of precipitation

Afternoon Rainfall

MASON UNIVERSITY

Thank you!

Morning ET (coupled vs. offline)

